• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
ZHANG Heshan, XU Jin, DENG Zhaoxiang, JIANG Yanjun. Temperature Field of in-Wheel Motor Using Coupled Multi-physics Domain Solution[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 76-83, 91. doi: 10.3969/j.issn.0258-2724.20170263
Citation: CUI Haomeng, SHAO Changjiang, WANG Chunyang, XUE Hao, GAO Jian, LI Zhizhong, ZHUANG Weilin, QI Qiming. Experimental Study on Friction and Sliding Performance of Laminated-Rubber Bearings Based on Shear Aging Resistance[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240180

Experimental Study on Friction and Sliding Performance of Laminated-Rubber Bearings Based on Shear Aging Resistance

doi: 10.3969/j.issn.0258-2724.20240180
  • Received Date: 10 Apr 2024
  • Accepted Date: 19 Mar 2025
  • Rev Recd Date: 02 Jul 2024
  • Available Online: 24 Mar 2025
  • To investigate the friction and sliding performance of laminated-rubber bearings under aging conditions, heat aging tests and quasi-static tests were conducted based on the related provisions of shear aging resistance in the bearing specification. Firstly, the actual working state of the bearing in bridge engineering was simulated. Then, the bearing samples were subjected to hot air accelerated aging treatment through an aging chamber and then to horizontal cyclic quasi-static loading through a compression-shear machine. Finally, comparative analyses were conducted on the deformation state, hysteresis behavior, and related mechanical responses of the bearing specimens under different loading conditions. The results show that the shear deformation degree of the aged specimens is large during loading; the sliding degree is small, and the hysteresis loop is narrow and long. The sliding displacement of the bearings is negatively correlated with surface pressure and loading rate. The shear stiffness of the bearings first decreases and then increases as equivalent shear strain rises, and the shear stiffness of aged specimens decreases; the equivalent stiffness increases. At the average surface pressure of 10 MPa during the use of the bearings, there is less difference in the friction coefficient between the two types of specimens, both of which are lower than the recommended value of 0.20 in the specifications. The friction coefficient of the aged specimens is generally greater than that of unaged specimens, and insufficient energy dissipation is observed. There is a performance change point in the unaged specimens, and the overall mechanical behavior shows a three-fold trend. However, the friction and sliding behaviors of the aged specimens are stable, and there is no sudden change as the equivalent shear strain increases from 0 to 250%.

     

  • [1]
    徐略勤,王龙,李建中,等. 在役桥梁挡块基于保险丝理念的改造方法[J]. 西南交通大学学报,2020,55(1): 118-125,143. doi: 10.3969/j.issn.0258-2724.20180425

    XU Lueqin, WANG Long, LI Jianzhong, et al. Reconstruction method of shear keys on existing bridges based on structural fuse concept[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 118-125,143. doi: 10.3969/j.issn.0258-2724.20180425
    [2]
    XIANG N L, LI J Z. Seismic performance of highway bridges with different transverse unseating-prevention devices[J]. Journal of Bridge Engineering, 2016, 21(9): 04016045.1-04016045.16.
    [3]
    庄卫林,刘振宇,蒋劲松. 汶川大地震公路桥梁震害分析及对策[J]. 岩石力学与工程学报,2009,28(7):1377-1387.

    ZHUANG Weilin,LIU Zhenyu,JIANG Jinsong. Earthquake-induced damage analysis of highway bridges in Wenchuan earthquake and countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(7):1377-1387.
    [4]
    李建中,汤虎. 中小跨径板式橡胶支座梁桥横向抗震设计研究[J]. 土木工程学报,2016,49(11): 69-78.

    LI Jianzhong, TANG Hu. Study on transverse seismic design of small and medium span bridges with elastomeric bearing pads[J]. China Civil Engineering Journal, 2016, 49(11): 69-78.
    [5]
    王克海,韦韩,李茜,等. 中小跨径公路桥梁抗震设计理念[J]. 土木工程学报,2012,45(9): 115-121.

    WANG Kehai, WEI Han, LI Qian, et al. Philosophies on seismic design of highway bridges of small or medium spans[J]. China Civil Engineering Journal, 2012, 45(9): 115-121.
    [6]
    陈力波,黄才贵,黄勇冰,等. 公路规则梁桥地震易损性模型及简化计算方法[J]. 西南交通大学学报,2018,53(1): 146-155. doi: 10.3969/j.issn.0258-2724.2018.01.018

    CHEN Libo, HUANG Caigui, HUANG Yongbing, et al. Seismic vulnerabilitu models and simplified calculation method for regular highway girder bridges[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 146-155. doi: 10.3969/j.issn.0258-2724.2018.01.018
    [7]
    中华人民共和国交通运输部. 公路桥梁抗震设计规范:JTG/T 2231-01—2020[S]. 北京:人民交通出版社,2020.
    [8]
    中华人民共和国交通运输部. 公路桥梁板式橡胶支座:JT/T 4—2019[S]. 北京:人民交通出版社,2019.
    [9]
    XIANG N L, LI J Z. Experimental and numerical study on seismic sliding mechanism of laminated-rubber bearings[J]. Engineering Structures, 2017, 141: 159-174. doi: 10.1016/j.engstruct.2017.03.032
    [10]
    李冲,王克海,惠迎新,等. 考虑摩擦滑移的板式橡胶支座连续梁桥地震反应分析[J]. 中国公路学报,2016,29(3): 73-81. doi: 10.3969/j.issn.1001-7372.2016.03.010

    LI Chong, WANG Kehai, HUI Yingxin, et al. Seismic response of continuous girder bridge with laminated rubber bearing considering friction sliding[J]. China Journal of Highway and Transport, 2016, 29(3): 73-81. doi: 10.3969/j.issn.1001-7372.2016.03.010
    [11]
    LI Y, WU Q Q. Experimental study on friction sliding performance of rubber bearings in bridges[J]. Advances in Materials Science and Engineering, 2017, 2017:5845149.1-5845149.8.
    [12]
    LIU K, CHANG K, LU C, et al. Seismic performance of skew bridge with friction type rubber bearings[C]// 14th World Conference on Earthquake Engineering. Beijing: WCEE, 2008: 1-8.
    [13]
    王克海,吴刚,张盼盼. 板式橡胶支座摩擦滑移性能试验研究[J]. 振动与冲击,2020,39(19): 1-6.

    WANG Kehai, WU Gang, ZHANG Panpan. Tests for friction sliding performance of plate rubber bearing[J]. Journal of Vibration and Shock, 2020, 39(19): 1-6.
    [14]
    WU G, WANG K H, ZHANG P P, et al. Effect of mechanical degradation of laminated elastomeric bearings and shear keys upon seismic behaviors of small-to-medium-span highway bridges in transverse direction[J]. Earthquake Engineering and Engineering Vibration, 2018, 17(1): 205-220. doi: 10.1007/s11803-018-0435-z
    [15]
    WU G, WANG K H, LU G Y, et al. An experimental investigation of unbonded laminated elastomeric bearings and the seismic evaluations of highway bridges with tested bearing components[J]. Shock and Vibration, 2018, 2018(1): 8439321.1-8439321.18.
    [16]
    MA Y H, LI Y M, ZHAO G F, et al. Experimental research on the time-varying law of performance for natural rubber laminated bearings subjected to seawater dry-wet cycles[J]. Engineering Structures, 2019, 195: 159-171. doi: 10.1016/j.engstruct.2019.05.101
    [17]
    RUSSO G, PAULETTA M. Sliding instability of fiber-reinforced elastomeric isolators in unbonded applications[J]. Engineering Structures, 2013, 48: 70-80. doi: 10.1016/j.engstruct.2012.08.031
    [18]
    LI Y M, MA Y H, ZHAO G F, et al. Experimental study on the effect of alternating ageing and sea corrosion on laminated natural rubber bearing’s tension-shear property[J]. Journal of Rubber Research, 2020, 23(3): 151-161. doi: 10.1007/s42464-020-00045-9
    [19]
    黄海新,李炫钢,李帆,等. 老化与偏心受压下板式橡胶支座抗震性能拟静力试验研究[J]. 土木与环境工程学报(中英文),2021,43(3): 51-58. doi: 10.11835/j.issn.2096-6717.2020.069

    HUANG Haixin, LI Xuangang, LI Fan, et al. Pseudo static test of seismic performance of rubber bearing plate under aging and eccentric compression[J]. Journal of Civil and Environmental Engineering, 2021, 43(3): 51-58. doi: 10.11835/j.issn.2096-6717.2020.069
    [20]
    关宏摘. 板式橡胶支座力学性能退化模型及损伤识别[D]. 开封:河南大学,2022.
    [21]
    FUKAHORI Y, GABRIEL P, LIANG H, et al. A new generalized philosophy and theory for rubber friction and wear[J]. Wear, 2020, 446/447: 203166.1-203166.18.
  • Relative Articles

    [1]WANG Yanqin, ZHANG Qiumin, LIN Feihong, DONG Liang. Electromagnetic-Thermal Field Coupling Calculation of Contactless Power Transfer Vehicle[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 545-551. doi: 10.3969/j.issn.0258-2724.20191123
    [2]SUN Keguo, LI Si, XU Weiping, XIAO Zhifei, LI Haobo, XU Yuping. Influence of Thermal Conductivity on Temporal and Spatial Distributions of Temperature Filed in Cold Region Tunnel[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 256-264, 289. doi: 10.3969/j.issn.0258-2724.20180530
    [3]CHEN Xianhua, MA Lili, YANG Guotao, CAI Degou. Temperature Field Characteristics of High-Speed Railway Subgrade Surface with Asphalt Concrete Layer in Cold Regions[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1196-1202. doi: 10.3969/j.issn.0258-2724.20170490
    [4]ZHANG Heshan, DENG Zhaoxiang, TUO Jiying, ZHANG Yu, TAO Shengchao. Multi-Objective Optimum Design for in-Wheel Motor Based on Improved Artificial Bee Colony Algorithm[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 671-678. doi: 10.3969/j.issn.0258-2724.20170094
    [5]GAO Yan, GENG Jiying, JIA Chao, ZHOU Jun, ZHU Yongquan, HE Benguo, ZHONG Yongqiang. Temperature Field Law in Cold Region Tunnels and Insulation Effect of Air Curtain[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1047-1054. doi: 10.3969/j.issn.0258-2724.20170295
    [6]DAI Gonglian, YANG Linghao, WEN Wangqing, ZHAO Tao. Time-History Analysis of Temperature Field of Medium-Low Maglev Guideway Girder[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 227-234. doi: 10.3969/j.issn.0258-2724.20170554
    [7]CAI Jing, LI Yue, SUN Qingang. Rutting Behavior of Flexible Pavement in Airport Turning Area under Temperature Field[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 186-194. doi: 10.3969/j.issn.0258-2724.2017.01.026
    [8]YANG Rongshan, WAN Zhangbo, LIU Xueyi, ZHANG Zhongwang, ZHAO Pingrui. Temperature Field Test of CRTS Ⅰ Twin-Block Ballastless Track in Winter[J]. Journal of Southwest Jiaotong University, 2015, 28(3): 454-460. doi: 10.3969/j.issn.0258-2724.2015.03.011
    [9]LIU Qingyou, WANG Xingming, XU Tao. Critical Discharge Flow of Sand Cleaning Fluid Considering Transient Temperature Effect of Horizontal Well[J]. Journal of Southwest Jiaotong University, 2014, 27(6): 1123-1129. doi: 10.3969/j.issn.0258-2724.2014.06.028
    [10]GUO Lei, LI Qunzhan, XIE Shaofeng, SHU Zeliang. Temperature Field of Catenary for Electrified Railway during Online Anti-icing[J]. Journal of Southwest Jiaotong University, 2013, 26(2): 230-235,242. doi: 10.3969/j.issn.0258-2724.2013.02.007
    [11]CHEN Xiao'an, SHANG Fujun, SONG Shuncheng. Numerical Simulation of Temperature Distribution of Induction Plasma Torch in Preparation of Superfine Powder[J]. Journal of Southwest Jiaotong University, 2011, 24(2): 271-276. doi: 10.3969/j.issn.0258-2724.2011.02.016
    [12]LI Jinping, CHEN Jianjun, ZHOU Chuanjun. Perturbed Numerical Algorithm of Nonprobabilistic Convex Set Theoretical Models for Temperature Field[J]. Journal of Southwest Jiaotong University, 2009, 22(1): 101-105.
    [13]WU Jianghong, WANG Xihui, TANG Yongbo, CHEN Yungui. Experimental Investigation on Periodical Temperature Field in Active Magnetic Regenerator of Rotary Magnetic Refrigerator[J]. Journal of Southwest Jiaotong University, 2009, 22(5): 743-747,793.
    [14]HE Yulong, YANG Lizhong, YANG Jiyi. Governing Equations for Coupled Thermo-Hydro-Mechanical Behaviors in Unsaturated Rock Mass[J]. Journal of Southwest Jiaotong University, 2006, 19(4): 419-423.
    [15]ZHAO Xin, WEN Ze-feng, JIN Xue-song. Numerical Simulation of Temperature Field in Process of Casting Solidification[J]. Journal of Southwest Jiaotong University, 2006, 19(1): 15-19.
    [16]HE Yu-long, YANGLi-zhong, YANGMing. A Quantitative Method for the Coupling Effect of Temperature Fields and Stress Fields in Rock Mass[J]. Journal of Southwest Jiaotong University, 2002, 15(1): 10-13.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-122025-012025-022025-032025-042025-052025-062025-072025-082025-092025-102025-11051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 31.6 %FULLTEXT: 31.6 %META: 64.5 %META: 64.5 %PDF: 3.9 %PDF: 3.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.7 %其他: 11.7 %其他: 0.3 %其他: 0.3 %上海: 1.0 %上海: 1.0 %东莞: 1.8 %东莞: 1.8 %临汾: 0.3 %临汾: 0.3 %北京: 3.7 %北京: 3.7 %十堰: 0.3 %十堰: 0.3 %南京: 3.7 %南京: 3.7 %南宁: 0.3 %南宁: 0.3 %南昌: 0.1 %南昌: 0.1 %南通: 0.1 %南通: 0.1 %哈尔滨: 0.4 %哈尔滨: 0.4 %哥伦布: 0.7 %哥伦布: 0.7 %唐山: 0.4 %唐山: 0.4 %嘉兴: 0.6 %嘉兴: 0.6 %大连: 0.1 %大连: 0.1 %天津: 0.3 %天津: 0.3 %太原: 0.1 %太原: 0.1 %安康: 0.1 %安康: 0.1 %宣城: 0.4 %宣城: 0.4 %山景城: 0.1 %山景城: 0.1 %常州: 0.3 %常州: 0.3 %广州: 0.3 %广州: 0.3 %弗吉尼亚州: 0.1 %弗吉尼亚州: 0.1 %张家口: 4.0 %张家口: 4.0 %徐州: 0.4 %徐州: 0.4 %成都: 0.9 %成都: 0.9 %扬州: 0.6 %扬州: 0.6 %杭州: 1.9 %杭州: 1.9 %格兰特县: 0.1 %格兰特县: 0.1 %武汉: 0.7 %武汉: 0.7 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.1 %洛阳: 0.1 %深圳: 0.9 %深圳: 0.9 %清远: 0.4 %清远: 0.4 %温州: 0.4 %温州: 0.4 %湖州: 0.1 %湖州: 0.1 %漯河: 1.2 %漯河: 1.2 %石家庄: 2.4 %石家庄: 2.4 %芒廷维尤: 12.2 %芒廷维尤: 12.2 %芜湖: 0.1 %芜湖: 0.1 %芝加哥: 0.7 %芝加哥: 0.7 %苏州: 0.1 %苏州: 0.1 %西宁: 38.1 %西宁: 38.1 %西安: 0.9 %西安: 0.9 %西雅图: 0.1 %西雅图: 0.1 %贵阳: 0.6 %贵阳: 0.6 %运城: 0.9 %运城: 0.9 %邯郸: 0.6 %邯郸: 0.6 %郑州: 0.3 %郑州: 0.3 %重庆: 0.3 %重庆: 0.3 %长沙: 1.5 %长沙: 1.5 %雷德蒙德: 0.6 %雷德蒙德: 0.6 %青岛: 0.6 %青岛: 0.6 %其他其他上海东莞临汾北京十堰南京南宁南昌南通哈尔滨哥伦布唐山嘉兴大连天津太原安康宣城山景城常州广州弗吉尼亚州张家口徐州成都扬州杭州格兰特县武汉沈阳洛阳深圳清远温州湖州漯河石家庄芒廷维尤芜湖芝加哥苏州西宁西安西雅图贵阳运城邯郸郑州重庆长沙雷德蒙德青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(6)

    Article views(134) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return