• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
ZHAO Pingrui, XU Tianci, LIU Wenxing, QU Chaoguang, BI Lanxiao, DING Chenxu. Flexibility Curvature Eigenvalue Method for Debonding Damage Identification of Unit Slab Track[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1100-1108, 1124. doi: 10.3969/j.issn.0258-2724.20191149
Citation: ZHAO Pingrui, XU Tianci, LIU Wenxing, QU Chaoguang, BI Lanxiao, DING Chenxu. Flexibility Curvature Eigenvalue Method for Debonding Damage Identification of Unit Slab Track[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1100-1108, 1124. doi: 10.3969/j.issn.0258-2724.20191149

Flexibility Curvature Eigenvalue Method for Debonding Damage Identification of Unit Slab Track

doi: 10.3969/j.issn.0258-2724.20191149
  • Received Date: 17 Dec 2019
  • Rev Recd Date: 21 Sep 2020
  • Available Online: 14 May 2021
  • Publish Date: 15 Oct 2021
  • In order to identify and locate the debondingdamage on the bottom of the CRTS Ⅲ ballastless trackslab, firstly, the flexibility matrix of the track structure is obtained by its modal analysis, and the flexibility curvature eigenvalue matrixis constructed with the use of the noise reduction data processing and Gaussian curvature. According to the accuracy index that can reflect how irregular protrusions in the non-damage area affect the damage location and the effectiveness index that can identify the damage range, the reasonable density of measuring points is obtained. A variety of damage conditions are established to study the scope of applying the indexes for identification.The results show that the flexible curvature eigenvalue of the track slab with the debonding damage has obvious jump in the damaged area; and its peak value corresponds to the center of the damaged area, which can effectively identify the hidden damage at the bottom of the unit plate track plates of CRTS Ⅰ and type Ⅲ of different material properties. Aiming at the debonding damage of the slab bottom larger than 0.4 m × 0.4 m, the measurement point density of 0.2 m is conducive to reducing the impact of noise on damage location and improving damage scope identification. When the side length of the damaged area at the bottom of the track slab is larger than 0.3 m, the flexibility curvature eigenvalue can accurately identify and locate the damage. The maximum absolute value of the flexibility curvature of the track slab increases with the debonding size, and they have a nearly linear relationship. Thus, with the visual graph of the flexibility curvature eigenvalue, the damage area can be identified.

     

  • 宋小林,吕天航,裴承杰. 板边离缝对CRTS Ⅲ型轨道-路基动力特性的影响[J]. 西南交通大学学报,2018,53(5): 913-920. doi: 10.3969/j.issn.0258-2724.2018.05.006

    SONG Xiaolin, LYU Tianhang, PEI Chengjie. Influence of interface crack on impact dynamic properties of CRTS Ⅲ slab track-subgrade system[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 913-920. doi: 10.3969/j.issn.0258-2724.2018.05.006
    VANDIVER J K. Detection of structural failure on fixed platforms by measurement of dynamic response[J]. Journal of Petroleum Technology, 1977, 29(3): 305-310. doi: 10.2118/5679-PA
    ADAMS R D, CAWLEY P, PYE C J, et al. A vibration technique for non-destructively assessing the integrity of structures[J]. Journal of Mechanical Engineering Science, 1978, 20(2): 93-100. doi: 10.1243/JMES_JOUR_1978_020_016_02
    CHANDRASHEKHAR M, GANGULI R. Damage assessment of structures with uncertainty by using mode-shape curvatures and fuzzy logic[J]. Journal of Sound and Vibration, 2009, 326(3/4/5): 939-957.
    ROY K, RAY-CHAUDHURI S. Fundamental mode shape and its derivatives in structural damage localization[J]. Journal of Sound and Vibration, 2013, 332(21): 5584-5593. doi: 10.1016/j.jsv.2013.05.003
    DIXIT A, HANAGUD S. Single beam analysis of damaged beams verified using a strain energy based damage measure[J]. International Journal of Solids and Structures, 2011, 48(3/4): 592-602.
    PHILIPS ADEWUYI A, WU Z S, KAMMRUJAMAN SERKER N H M. Assessment of vibration-based damage identification methods using displacement and distributed strain measurements[J]. Structural Health Monitoring, 2009, 8(6): 443-461. doi: 10.1177/1475921709340964
    CADDEMI S, CALIÒ I. The exact explicit dynamic stiffness matrix of multi-cracked Euler-Bernoulli beam and applications to damaged frame structures[J]. Journal of Sound and Vibration, 2013, 332(12): 3049-3063. doi: 10.1016/j.jsv.2013.01.003
    PANDEY A K, BISWAS M. Damage detection in structures using changes in flexibility[J]. Journal of Sound and Vibration, 1994, 169(1): 3-17. doi: 10.1006/jsvi.1994.1002
    余云燕,鲍亦兴,陈云敏. 基于回传射线矩阵法框架结构的损伤检测研究[J]. 土木工程学报,2005,38(3): 53-58,69. doi: 10.3321/j.issn:1000-131X.2005.03.009

    YU Yunyan, BAO Yixing, CHEN Yunmin. Damage detection of frame structures based on the reverbera tion matrix method[J]. China Civil Engineering Journal, 2005, 38(3): 53-58,69. doi: 10.3321/j.issn:1000-131X.2005.03.009
    ANTONACI P, BRUNO C L E, GLIOZZI A S, et al. Monitoring evolution of compressive damage in concrete with linear and nonlinear ultrasonic methods[J]. Cement and Concrete Research, 2010, 40(7): 1106-1113. doi: 10.1016/j.cemconres.2010.02.017
    MITRA M, GOPALAKRISHNAN S. Guided wave based structural health monitoring:a review[J]. Smart Materials and Structures, 2016, 25(5): 053001.1-053001.29.
    李淑春,刁波,郑晓宁,等. 钢筋混凝土截面损伤分析与检测[J]. 铁道科学与工程学报,2008,5(1): 11-15. doi: 10.3969/j.issn.1672-7029.2008.01.003

    LI Shuchun, DIAO Bo, ZHENG Xiaoning, et al. Damage evaluation and detection on reinforced concrete section[J]. Journal of Railway Science and Engineering, 2008, 5(1): 11-15. doi: 10.3969/j.issn.1672-7029.2008.01.003
    KIM J T, RYU Y S, CHO H M, et al. Damage identification in beam-type structures:frequency-based method vs mode-shape-based method[J]. Engineering Structures, 2003, 25(1): 57-67. doi: 10.1016/S0141-0296(02)00118-9
    DAWARI V B, VESMAWALA G R. Modal curvature and modal flexibility methods for honeycomb damage identification in reinforced concrete beams[J]. Procedia Engineering, 2013, 51: 119-124. doi: 10.1016/j.proeng.2013.01.018
    WU N, WANG Q. Experimental studies on damage detection of beam structures with wavelet transform[J]. International Journal of Engineering Science, 2011, 49(3): 253-261. doi: 10.1016/j.ijengsci.2010.12.004
    李永梅,周锡元,高向宇,等. 柔度曲率法对梁结构的损伤诊断[J]. 北京工业大学学报,2008,34(11): 1173-1178.

    LI Yongmei, ZHOU Xiyuan, GAO Xiangyu, et al. Damage diagnosis of beam structures by flexibility curvature method[J]. Journal of Beijing University of Technology, 2008, 34(11): 1173-1178.
    马骏,陈立,赵德有. 基于柔度曲率矩阵的加筋板结构损伤识别方法[J]. 船舶力学,2011,15(8): 881-891. doi: 10.3969/j.issn.1007-7294.2011.08.008

    MA Jun, CHEN Li, ZHAO Deyou. Damage detection in stiffened panel based on flexibility curvature matrix[J]. Journal of Ship Mechanics, 2011, 15(8): 881-891. doi: 10.3969/j.issn.1007-7294.2011.08.008
    CHEN Li, MA Jun, ZHAO Deyou, et al. Curvature of flexibility matrix for damage identification in legs of jacket platforms[J]. China Ocean Engineering, 2008, 22(4): 547-559.
    NIE Z H, HAO H, MA H W. Structural damage detection based on the reconstructed phase space for reinforced concrete slab:experimental study[J]. Journal of Sound and Vibration, 2013, 332(4): 1061-1078. doi: 10.1016/j.jsv.2012.08.024
    XU H, CHENG L, SU Z Q, et al. Damage visualization based on local dynamic perturbation:theory and application to characterization of multi-damage in a plane structure[J]. Journal of Sound and Vibration, 2013, 332(14): 3438-3462. doi: 10.1016/j.jsv.2013.01.033
    XU J, WANG P, LIU H, et al. Identification of internal damage in ballastless tracks based on Gaussian curvature mode shapes[J]. Journal of Vibroengineering, 2016, 18(8): 5217-5229. doi: 10.21595/jve.2016.17712
    陈立. 基于柔度曲率矩阵的结构损伤识别研究[D]. 大连: 大连理工大学, 2009.
    周奎,徐宏文,方早,等. 基于柔度曲率曲线拟合的薄板结构损伤识别研究[J]. 上海理工大学学报,2018,40(3): 296-301.

    ZHOU Kui, XU Hongwen, FANG Zao, et al. Damage identification of thin plate-type structures based on the flexibility curvature curve fitting[J]. Journal of University of Shanghai for Science and Technology, 2018, 40(3): 296-301.
  • Relative Articles

    [1]YANG Rongshan, CHEN Jian, WANG Yuanhao, GAO Ziyuan, LI Ying, CAO Shihao. Experimental Design of Hydrodynamic Pressure in Ballastless Track Crack[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 414-420. doi: 10.3969/j.issn.0258-2724.20220342
    [2]CHEN Zui, LIU Xueyi, HU Ying, CAO Ruiheng, XIAO Jieling, YANG Rongshan. Fatigue Characteristic of High-Frequency Vibration for CRTS Track Slab[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 106-111, 119. doi: 10.3969/j.issn.0258-2724.20210030
    [3]REN Juanjuan, DU Wei, DENG Shijie, FENG Xiang. Chloride Ion Transport in Concrete of Ballastless Track under Fatigue Loading[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 510-516. doi: 10.3969/j.issn.0258-2724.20190690
    [4]GAO Liang, ZHAO Wenqiang, ZHONG Yanglong, TONG Fengzhuang. Checking and Analysis of Reinforcement Arrangement Scheme for Slab Track Based on Comprehensive Index Method[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 500-509. doi: 10.3969/j.issn.0258-2724.20190358
    [5]REN Juanjuan, DENG Shijie, YAN Yafei, DU Wei, NI Yuefeng. Influence of Train Load on Mechanical Property of Prefabricated Slab Track[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1210-1218. doi: 10.3969/j.issn.0258-2724.20170642
    [6]LIU Xiaochun, JIN Cheng, YU Zhiwu, HE Chen, YANG Yiyi. Fatigue Testing of CRTS Ⅲ Ballastless Slab Track Structures under Transverse Bending[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 23-30. doi: 10.3969/j.issn.0258-2724.2018.01.003
    [7]LIU Xueyi, LI Jiali, KANG Weixin, LIU Xiaokai, YANG Rongshan. Simplified Calculation of Temperature in Concrete Slabs of Ballastless Track and Influence of Extreme Weather[J]. Journal of Southwest Jiaotong University, 2017, 30(6): 1037-1045,1060. doi: 10.3969/j.issn.0258-2724.2017.06.001
    [8]CAO Shihao, YANG Rongshan, LIU Xueyi, SU Chengguang, GUO Likang. Analysis of Water Pressure in Ballastless Track Crack[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 36-42. doi: 10.3969/j.issn.0258-2724.2016.01.006
    [9]DENG Nian, PENG Qiyuan. Synergy Model of Vertical Structure of High-Speed Railway Dispatching System[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 152-160. doi: 10.3969/j.issn.0258-2724.2016.01.022
    [10]LIAO Hongjian, ZHU Qingnü, ZAN Yuewen, XIE Yongyong, SUN Junyu. Detection of Ballastless Track Diseases in High-Speed Railway Based on Ground Penetrating Radar[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 8-13. doi: 10.3969/j.issn.0258-2724.2016.01.002
    [11]REN Juanjuan, YAN Xiaobo, XU Guanghui, XU Kun. Effects of Contact Loss underneath Concrete Roadbed on Dynamic Performances of Slab Track-Subgrade System[J]. Journal of Southwest Jiaotong University, 2014, 27(6): 961-966. doi: 10.3969/j.issn.0258-2724.2014.06.005
    [12]XU Guihong, LIU Xueyi, YANG Rongshan, YANG Junbin. Reasons for Displacement of Ballastless Track Slab during Self-Compacting Concrete Pouring[J]. Journal of Southwest Jiaotong University, 2013, 26(1): 42-46. doi: 10.3969/j.issn.0258-2724.2013.01.007
    [13]QIU Yanjun, FANG Mingjing, ZHANG Xiaojing, WEI Yongxing. Dynamic Analysis of Structural Adaptivity of Ballastless Track Substructure of High-Speed Railway[J]. Journal of Southwest Jiaotong University, 2011, 24(2): 183-187. doi: 10.3969/j.issn.0258-2724.2011.02.001
    [14]WEI Qiang, ZHAO Guo-Tang, GAO Yong-Jie, CAO Xiao-Pei, FU Qi-Zhang. Experimental Research of Anchored System for Longitudinal Connected Ballastless Track in High-Speed Railway[J]. Journal of Southwest Jiaotong University, 2011, 24(4): 553-558. doi: 10.3969/j.issn.0258-2724.2011.04.005
    [15]LIN Hongsong, LI Peigang, YAN Hua, LIU Xueyi. Mechanical Analysis of Ballastless Track with Damaged Cracks under Train Load[J]. Journal of Southwest Jiaotong University, 2010, 23(6): 904-908. doi: 10.3969/j.issn.0258-2724.2010.06.014
    [16]JIANG Guanlu, KONG Xianghui, MENG Liji, WANG Zhimeng. Dynamic Characteristics of Soil Subgrade Bed for Ballastless Track[J]. Journal of Southwest Jiaotong University, 2010, 23(6): 855-862. doi: 10.3969/j.issn.0258-2724.2010.06.006
    [17]CAI Cheng-Biao, XU Peng. Dynamic Analysis of Key Design Parameters for Ballastless Track of High-Speed Railway[J]. Journal of Southwest Jiaotong University, 2010, 23(4): 493-497. doi: 10. 3969/ j. issn. 0258-2724.
    [18]ZHAN Yongxiang, JIANG Guanlu, NIU Guohui, WEI Yongxing. Model Test Investigation of Pile-Plank Embankment of Ballastless Truck for High-Speed Railway[J]. Journal of Southwest Jiaotong University, 2007, 20(4): 400-403,408.
    [19]CHEN Guo, ZHAI Wan-ming, ZUO Hong-fu. Safety Management of Track Irregularities of 250 km/h High-Speed Railway[J]. Journal of Southwest Jiaotong University, 2001, 14(5): 495-499.
  • Cited by

    Periodical cited type(2)

    1. 刘渝,赵坪锐,徐天赐,刘卫星,姚力. 基于广义柔度曲率信息熵的板式轨道脱空损伤识别. 铁道标准设计. 2024(04): 48-54+62 .
    2. 杜威,任娟娟,张书义,杜俊宏,邓世杰. 无砟轨道结构层间损伤识别技术研究进展. 浙江大学学报(工学版). 2023(02): 353-366 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0305101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 40.0 %FULLTEXT: 40.0 %META: 57.2 %META: 57.2 %PDF: 2.8 %PDF: 2.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.0 %其他: 4.0 %其他: 0.4 %其他: 0.4 %上海: 3.6 %上海: 3.6 %东莞: 0.4 %东莞: 0.4 %临汾: 0.4 %临汾: 0.4 %保定: 0.2 %保定: 0.2 %北京: 0.6 %北京: 0.6 %南京: 0.2 %南京: 0.2 %南通: 0.2 %南通: 0.2 %合肥: 0.2 %合肥: 0.2 %和田: 0.4 %和田: 0.4 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.2 %哥伦布: 0.2 %嘉兴: 0.2 %嘉兴: 0.2 %大连: 0.2 %大连: 0.2 %天津: 1.7 %天津: 1.7 %太原: 0.2 %太原: 0.2 %宣城: 0.2 %宣城: 0.2 %常州: 0.2 %常州: 0.2 %开封: 0.4 %开封: 0.4 %张家口: 3.8 %张家口: 3.8 %成都: 3.2 %成都: 3.2 %扬州: 0.6 %扬州: 0.6 %杭州: 0.2 %杭州: 0.2 %格兰特县: 0.2 %格兰特县: 0.2 %武汉: 0.2 %武汉: 0.2 %池州: 0.6 %池州: 0.6 %沈阳: 0.4 %沈阳: 0.4 %洛阳: 0.2 %洛阳: 0.2 %深圳: 0.2 %深圳: 0.2 %湖州: 0.2 %湖州: 0.2 %漯河: 1.9 %漯河: 1.9 %石家庄: 0.4 %石家庄: 0.4 %秦皇岛: 0.2 %秦皇岛: 0.2 %芒廷维尤: 5.9 %芒廷维尤: 5.9 %芝加哥: 0.8 %芝加哥: 0.8 %西宁: 60.6 %西宁: 60.6 %西安: 0.8 %西安: 0.8 %贵阳: 0.2 %贵阳: 0.2 %达州: 0.8 %达州: 0.8 %运城: 1.3 %运城: 1.3 %郑州: 0.2 %郑州: 0.2 %长沙: 1.9 %长沙: 1.9 %鹤岗: 0.4 %鹤岗: 0.4 %其他其他上海东莞临汾保定北京南京南通合肥和田哈尔滨哥伦布嘉兴大连天津太原宣城常州开封张家口成都扬州杭州格兰特县武汉池州沈阳洛阳深圳湖州漯河石家庄秦皇岛芒廷维尤芝加哥西宁西安贵阳达州运城郑州长沙鹤岗

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article views(482) PDF downloads(12) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return