• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
CHEN Qiang, DONG Guicheng, WANG Chao, ZHU Baolong, ZHAO Xiaoyan. Characteristics Analysis of Soil Arching Effect Behind Pile Based on Transparent Soil Technology[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 509-517. doi: 10.3969/j.issn.0258-2724.20190744
Citation: CHEN Qiang, DONG Guicheng, WANG Chao, ZHU Baolong, ZHAO Xiaoyan. Characteristics Analysis of Soil Arching Effect Behind Pile Based on Transparent Soil Technology[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 509-517. doi: 10.3969/j.issn.0258-2724.20190744

Characteristics Analysis of Soil Arching Effect Behind Pile Based on Transparent Soil Technology

doi: 10.3969/j.issn.0258-2724.20190744
  • Received Date: 06 Aug 2019
  • Rev Recd Date: 30 Oct 2019
  • Available Online: 28 Apr 2020
  • Publish Date: 01 Jun 2020
  • In order to study the characteristics and evolution process of soil arching effect behind a circular pile, an experimental study on pile-soil interaction based on the transparent soil technology was carried out from a microscopic perspective. Firstly, the tests as to transparent soil ratio were carried out to obtain the soil with desirable physical and mechanical properties. Secondly, the experimental system was designed and the speckle field image of the interaction between the transparent soil and pile was obtained. Finally, the displacement vector diagram was obtained through particle image velocimetry (PIV) technique, and the displacement variation rule of the transparent soil was further analyzed. The results show that the movement trend and displacement characteristics of soil particles under the action of the circular pile can be obtained through displacement vector, and the arch structure formed by displacement contour, namely, the soil arch structure behind the pile, can be further interpreted, as it presents a parabolic shape and its range is related to pile diameter, pile spacing and depth. The larger the pile diameter is, the larger the soil arch area is. When the pile diameter is 30 mm, the soil arch is up to 100 mm. Meanwhile, the pile-soil interaction affects larger region. The larger the pile spacing is, the larger the maximum arch height is. When the pile spacing is 80 mm, the soil arch height also reaches 100 mm. The soil arch height under different depths shows a similar trend. The deeper the depth is, the smaller the maximum arch height is. When the depth is 50 mm, the arch height is 60 mm. According to the fitting formula, the maximum arch height decreases gradually from the pile top to the bottom along the pile, and at the same time, it increases at first and then tends to stabilize with the increase of soil displacement. The stable value is correlated positively with pile diameter and pile spacing and negatively with depth.

     

  • TERZAGHI K. Stress distribution in dry and in saturated sand above a yielding trap-door[C]//Procee-dings of 1st Conference of Soil Mechanics and Foundation Engineering. Boston: Cambridge Press, 1936: 307-316
    CHEN L T, POULOS H G, HULL T S. Model tests on pile groups subjected to lateral soil movement[J]. Soils and Foundations, 1997, 37(1): 1-12. doi: 10.3208/sandf.37.1
    张建勋,陈福全,简洪钰. 被动桩中土拱效应问题的数值分析[J]. 岩土力学,2004,25(2): 174-178. doi: 10.3969/j.issn.1000-7598.2004.02.002

    ZHANG Jianxun, CHEN Fuquan, JIAN Hongyu. Numerical analysis of soil arching effects in passive piles[J]. Rock and Soil mechanics, 2004, 25(2): 174-178. doi: 10.3969/j.issn.1000-7598.2004.02.002
    张建华,谢强,张照秀. 抗滑桩结构的土拱效应及其数值模拟[J]. 岩石力学与工程学报,2004,23(4): 699-699. doi: 10.3321/j.issn:1000-6915.2004.04.032

    ZHANG Jianhua, XIE Qiang, ZHANG Zhaoxiu. Arching effect of anti-slide pile structure and its numerical simulation[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(4): 699-699. doi: 10.3321/j.issn:1000-6915.2004.04.032
    韩爱民,肖军华,梅国雄. 被动桩中土拱效应特征与影响参数研究[J]. 工程地质学报,2006,14(1): 111-116. doi: 10.3969/j.issn.1004-9665.2006.01.021

    HAN Aimin, XIAO Junhua, MEI Guoxiong. Behavior of soil arching between passive pilesand effects parameters study[J]. Journal of Engineering Geology, 2006, 14(1): 111-116. doi: 10.3969/j.issn.1004-9665.2006.01.021
    周应华,周德培,冯君. 推力桩桩间土拱几何力学特性及桩间距的确定[J]. 岩土力学,2006,27(3): 455-457. doi: 10.3969/j.issn.1000-7598.2006.03.023

    ZHOU Yinghua, ZHOU Depei, FENG Jun. Geometrically mechanical characters of soil arch between two adjacent laterally loaded piles and determination of suitable pile spacing[J]. Rock and Soil mechanics, 2006, 27(3): 455-457. doi: 10.3969/j.issn.1000-7598.2006.03.023
    刘飞成, 张建经, 闫世杰, 等. 基于桩网路堤简化分析方法的参数研究[J]. 西南交通大学学报, 2018, 53(6): 1227-1236.

    LIU Feicheng, ZHANG Jianjing, YAN Shijie, et al. Parameters analysis based on simplified method to solve piled embankment with geogrid-reinforcement[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1227-1236.
    MANNHEIMER R J, OSWALD C J. Development of transparent porous media with permeabilities and porosities comparable to soils,aquifers,and petroleum reservoirs[J]. Ground Water, 1993, 31(5): 781-788. doi: 10.1111/j.1745-6584.1993.tb00851.x
    ISKANDER M, SADEK S, LIU J. Optical measurement of deformation using transparent silica gel to model sand[J]. International Journal of Physical Modelling Geotechnics, 2002, 2(4): 13-26. doi: 10.1680/ijpmg.2002.020402
    孔纲强,孙学谨,肖扬,等. 透明土与标准砂压缩变形特性对比试验研究[J]. 岩土工程学报,2016,38(10): 1895-1903. doi: 10.11779/CJGE201610020

    KONG Gangqiang, SUN Xuejin, XIAO Yang, et al. Comparative experiments on compressive deformation properties of transparent soil and standard sand[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1895-1903. doi: 10.11779/CJGE201610020
    ISKANDER M G, LIU J, SADEK S. Transparent amorphous silica to model clay[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2002, 128(3): 262-273.
    WILLERT C. The fully digital evaluation of photographic PIV recordings[J]. Applied Scientific Research, 1996, 56(2/3): 79-102. doi: 10.1007/BF02249375
    LIU J. Visualization of 3-D deformations using transparent “soil” models[D]. New York: Polytechnic University, 2003.
    曹兆虎,孔纲强,刘汉龙,等. 基于透明土的管桩贯入特性模型试验研究[J]. 岩土工程学报,2014,36(8): 1564-1568. doi: 10.11779/CJGE201408025

    CAO Zhaohu, KONG Gangqiang, LIU Hanlong, et al. Model tests on pipe pile penetration by using transparent soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1564-1568. doi: 10.11779/CJGE201408025
    周航,孔纲强,崔允亮. 基于透明土的XCC桩沉桩挤土效应模型试验及其理论研究[J]. 土木工程学报,2017,50(7): 100-109.

    ZHOU Hang, KONG Gangqiang, CUI Yunliang. Model test and theoretical study on XCC pile penetration effect based on transparent soil[J]. China Civil Engineering Journal, 2017, 50(7): 100-109.
    齐昌广,左殿军,刘干斌,等. 塑料套管混凝土桩挤土效应的非侵入可视化研究[J]. 岩石力学与工程学报,2017,36(9): 2334-2340.

    QI Changguang, ZUO Dianjun, LIU ganbin, et al. Non-intrusively visualization on squeezing effect of plastic tube cast-in-place concrete piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(9): 2334-2340.
    周东,刘汉龙,仉文岗,等. 被动桩侧土体位移场的透明土模型试验[J]. 岩土力学,2019,40(7): 2686-2694.

    ZHOU Dong, LIU Hanglong, ZHANG Wengang, et al. Transparent soil model test on the displacement field of soil around single passive pile[J]. Rock and Soil Mechanics, 2019, 40(7): 2686-2694.
    KONG G Q, CAO Z H, ZHOU H, et al. Analysis of piles under oblique pullout load using transparent-soil models[J]. Geotechnical Testing Journal, 2015, 38(5): 728-736.
    LIU J Y, ISKANDER M G. Modeling capacity of transparent soil[J]. Canadian Geotechnical Journal, 2010, 47(4): 451-460. doi: 10.1139/T09-116
    谭可源. 刚性桩复合地基土拱效应的研究[C]//中国公路学会第七届中国公路科技创新高层论坛. 北京: 人民交通出版社, 2015: 112-120.
  • Relative Articles

    [1]ZHOU Siwei, LENG Wuming, NIE Rusong, LI Yafeng, DI Honggui, CHEN Weigeng. Geometric Contour of Slip Surfaces and Loosening Earth Pressure in Sand Under Soil-Arching Effect[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1413-1422. doi: 10.3969/j.issn.0258-2724.20210651
    [2]ZHANG Shuangyang, ZHAO Renda, JIA Yi, WANG Yongbao, XIE Haiqing. Model Test Study on Long-Span Railway Concrete Arch Bridge with Rigid Skeleton[J]. Journal of Southwest Jiaotong University, 2017, 30(6): 1088-1096. doi: 10.3969/j.issn.0258-2724.2017.06.008
    [3]LI Dengfeng, HU Xiewen, ZHAO Xiaoyan, YUE Zongyu. Variation of Horizontal Arch Height of Granite Residual Soil Slope in Vertical Direction[J]. Journal of Southwest Jiaotong University, 2016, 29(5): 1024-1032. doi: 10.3969/j.issn.0258-2724.2016.05.027
    [4]ZHANG Min, MA Jianlin, SU Quanke, WU Weisheng. Model Test on Bearing Capacity Characteristics of Steel Tubular Composite Piles[J]. Journal of Southwest Jiaotong University, 2015, 28(2): 312-318. doi: 10.3969/j.issn.0258-2724.2015.02.016
    [5]ZHAO Pingrui, YAN Jianhua, WANG Kejiang, WANG Dong, LI Wei, WANG Jiawei. Model Experiment Study of Continuous Track Slab Tension Cracks[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 793-798. doi: 10.3969/j.issn.0258-2724.2014.05.008
    [6]HU Qi-Jun, WEN Hua, GONG Cheng, WANG Tian-Heng. Model Test of Water Content Control of Saturated Over-Wet Soil[J]. Journal of Southwest Jiaotong University, 2011, 24(4): 558-563. doi: 10.3969/j.issn.0258-2724.2011.04.006
    [7]JIANG Jun, BO Qian-Hui, GOU Gong-Xie. Model Test for Local Stress Distribution in Anchorage Zones of Continuous Rigid Frame Composite Arch Bridge[J]. Journal of Southwest Jiaotong University, 2011, 24(5): 726-731. doi: 10.3969/j.issn.0258-2724.2011.05.003
    [8]PU Qianhui, GOU Hongye, ZHANG Junhua. Model Test of Corbel Cracking and Reinforcement of Urban Overpass[J]. Journal of Southwest Jiaotong University, 2008, 21(5): 648-653.
    [9]ZHAN Yongxiang, JIANG Guanlu, NIU Guohui, WEI Yongxing. Model Test Investigation of Pile-Plank Embankment of Ballastless Truck for High-Speed Railway[J]. Journal of Southwest Jiaotong University, 2007, 20(4): 400-403,408.
    [10]LI Xiaobin, YANG Yongqing, PU Qianhui, LIU Zusheng. Model Test of Cantilever Casting Construction of Reinforced Concrete Arch Bridge[J]. Journal of Southwest Jiaotong University, 2007, 20(5): 526-530.
    [11]CHENG Gang, QIUWen-ge, GAOXin-qiang. Experimental Research on Bamboo-Truncating Tunnel Portal for Single-Track Railway[J]. Journal of Southwest Jiaotong University, 2004, 17(2): 152-156.
    [12]WANZhen, LIQiao, MAOXue-ming. Experimental Research of Shear Lag Effect of Cable-Stayed Bridge withΠCross-Section Main Girder[J]. Journal of Southwest Jiaotong University, 2004, 17(5): 623-627.
    [13]LIN Gang, HE Chuan. Experiments of Support Structure of Twin-Bore Highway Tunnels[J]. Journal of Southwest Jiaotong University, 2004, 17(3): 362-365.
    [14]LOU Yi-hong, PENG Jun-sheng. Analysis of Pile-Subsoil Interaction with Sand-Box Model Test and Calculation[J]. Journal of Southwest Jiaotong University, 2003, 16(2): 164-168.
    [15]JIAHai-li, WANG Cheng-hua, LIJiang-hong. Discussion on Some Issues in Theory of Soil Arch[J]. Journal of Southwest Jiaotong University, 2003, 16(4): 398-402.
    [16]CAOXin-wen, LUO Qiang, XUEShuang-gang. Model Test of the Effects of Geocells and Geonets on Subgrade Strengthening under Static Loads[J]. Journal of Southwest Jiaotong University, 2001, 14(3): 322-326.
    [17]CHENWei-qing, ZHANG Qiang. A Model Test on the Anchorage Zones of the Second Nanjing Changjiang River Bridge[J]. Journal of Southwest Jiaotong University, 2001, 14(2): 185-189.
  • Cited by

    Periodical cited type(11)

    1. 陈茂伟. 基于弹性理论的抗滑桩桩间土拱高度分析. 能源技术与管理. 2024(04): 200-203 .
    2. 朱彦鹏,成栋. 考虑土拱效应的微型桩组合结构合理桩间距研究. 地下空间与工程学报. 2024(05): 1624-1633 .
    3. 林斌,赵咏佳,李怀鑫,田竹华,王鹏. 土拱应力传递模型及其形态差异性对比. 工业建筑. 2023(01): 182-188 .
    4. 宗梓煦,郑鹏,邓泽田,仉文岗,王鲁琦. 仿生牙根桩承载性能透明土模型试验研究. 土木与环境工程学报(中英文). 2023(04): 19-28 .
    5. 周思危,冷伍明,聂如松,李亚峰,狄宏规,陈伟庚. 砂土拱效应滑移面几何轮廓与松动土压力分析. 西南交通大学学报. 2023(06): 1413-1422 . 本站查看
    6. 王兴,孙娟娟,苏柳. 人工合成透明砂强度特性影响因素研究. 温州大学学报(自然科学版). 2022(02): 54-62 .
    7. 尤静霖,王士杰,王昊岚. 考虑土拱效应及中主应力影响的桩间挡板土压力计算方法. 水文地质工程地质. 2022(05): 90-95 .
    8. 安旭,袁宝明,陈国芳. 对称障碍物对瓶颈处行人拱形的影响研究. 消防科学与技术. 2022(09): 1217-1222 .
    9. 钟卫,张帅,贺拿. 基于相对变形方法的桩后土拱模型试验研究. 岩土力学. 2022(S2): 315-326 .
    10. 任翔,罗丽娟,李芳涛,潘瑞,刘龙,穆桐. 黄土地区抗滑桩嵌固段桩前被动土拱形成演化过程试验. 中国公路学报. 2022(11): 86-96 .
    11. 王兴,吴建佳,李丛蕾,李本东. 人工合成透明砂与标准砂强度对比试验. 土工基础. 2022(06): 956-962 .

    Other cited types(12)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0305101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 38.7 %FULLTEXT: 38.7 %META: 56.4 %META: 56.4 %PDF: 4.9 %PDF: 4.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.0 %其他: 7.0 %China: 0.4 %China: 0.4 %三亚: 0.2 %三亚: 0.2 %上海: 2.7 %上海: 2.7 %东莞: 0.4 %东莞: 0.4 %临汾: 0.4 %临汾: 0.4 %佛山: 0.2 %佛山: 0.2 %保定: 0.4 %保定: 0.4 %北京: 3.2 %北京: 3.2 %南京: 1.1 %南京: 1.1 %南宁: 1.6 %南宁: 1.6 %吉安: 0.2 %吉安: 0.2 %哥伦布: 0.5 %哥伦布: 0.5 %嘉兴: 0.2 %嘉兴: 0.2 %大连: 0.2 %大连: 0.2 %天津: 0.2 %天津: 0.2 %威海: 0.2 %威海: 0.2 %宣城: 0.5 %宣城: 0.5 %广州: 3.2 %广州: 3.2 %张家口: 1.1 %张家口: 1.1 %成都: 4.0 %成都: 4.0 %扬州: 0.2 %扬州: 0.2 %昆明: 0.4 %昆明: 0.4 %杭州: 1.4 %杭州: 1.4 %池州: 1.4 %池州: 1.4 %湛江: 0.9 %湛江: 0.9 %漯河: 0.4 %漯河: 0.4 %芒廷维尤: 12.3 %芒廷维尤: 12.3 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.4 %苏州: 0.4 %襄阳: 0.2 %襄阳: 0.2 %西宁: 50.5 %西宁: 50.5 %贝尔格莱德: 0.5 %贝尔格莱德: 0.5 %贵阳: 0.2 %贵阳: 0.2 %运城: 0.9 %运城: 0.9 %连云港: 0.4 %连云港: 0.4 %重庆: 0.5 %重庆: 0.5 %长沙: 0.9 %长沙: 0.9 %青岛: 0.4 %青岛: 0.4 %其他China三亚上海东莞临汾佛山保定北京南京南宁吉安哥伦布嘉兴大连天津威海宣城广州张家口成都扬州昆明杭州池州湛江漯河芒廷维尤芝加哥苏州襄阳西宁贝尔格莱德贵阳运城连云港重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(6)

    Article views(701) PDF downloads(32) Cited by(23)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return