• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
YANG Qian, YANG Qinghua, ZHENG Lining, TIAN Qiang, LIU Yongquan, YAO Jintao, MU Yi, YAO Yuan. Experimental Study on Discharge and Energy Dissipation of Baffle-Drop Shaft in Deep Tunnel Drainage System[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1247-1256. doi: 10.3969/j.issn.0258-2724.20190324
Citation: YANG Qian, YANG Qinghua, ZHENG Lining, TIAN Qiang, LIU Yongquan, YAO Jintao, MU Yi, YAO Yuan. Experimental Study on Discharge and Energy Dissipation of Baffle-Drop Shaft in Deep Tunnel Drainage System[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1247-1256. doi: 10.3969/j.issn.0258-2724.20190324

Experimental Study on Discharge and Energy Dissipation of Baffle-Drop Shaft in Deep Tunnel Drainage System

doi: 10.3969/j.issn.0258-2724.20190324
  • Received Date: 10 Apr 2019
  • Rev Recd Date: 04 Jul 2019
  • Available Online: 07 Jul 2020
  • Publish Date: 15 Dec 2020
  • In order to study the transition characteristics with the high-speed air-water flow in the drop shaft of a deep tunnel drainage system, a hydraulic model test was conducted to observe the flow patterns in the process of drop shaft discharge, analyze the relationship between the maximum discharge and the baffle spacing, and calculate the energy dissipation rates of the drop shaft under different conditions. On this basis, the energy dissipation mechanism in the process of drop shaft discharge was revealed. Results show that there are three kinds of flow regimes in the discharge process of drop shaft, i.e., wall-impact confined flow, critical flow, and Free-drop flow. Hydraulic jump is the primary cause of energy dissipation of water on the baffle, and the collision of the water flow with the bottom-drop shaft fluid in the reverse direction and the resulted breakage achieve the ultimate purpose of energy dissipation. The maximum discharge of drop shaft is between 8.7 × 10−3 and 14.7 × 10−3 m3/s when the shaft diameter D = 0.4 m and the baffle spacing d ranges from 16.02 to 24.56 cm, and there is a linear relationship between the baffle spacing and the maximum discharge (Qm). The formula of energy dissipation rate is deduced according to the law of conservation of energy, from which the optimal energy dissipation rate of drop shaft is achieved at d = 19.4 cm and inclination angle θ = 10°. The aperture diameter (Ф) of the cover-plate has a great influence on the internal pressure of the drop shaft. When Ф ≥ 4 cm, the internal pressure is nearly 0; the baffle with a certain inclination angle is conducive to accelerating the discharge process of the drop shaft. The impact forces on the upper, middle and lower baffles (denoted by Fu, Fm and Fd, respectively) present a relation of Fu > Fm > Fd; the maximum surface loads of the upper, middle and lower baffles are 42.8, 30.7 and 22.8 kN/m2, respectively. The experimental results about the maximum discharge and optimal energy dissipation rate of baffle-drop shaft could provide a reference for the design and operation of the baffle-drop shaft of deep tunnel drainage systems.

     

  • 黄明利, 张志恩, 谭忠盛. 我国城市防洪排涝深层隧道建设模式[J]. 土木工程学报, 2017(增刊1): 76-81.

    HUANG Mingli, ZHANG Zhien, TAN Zhongsheng. Construction model of deep tunnel for urban flood control and drainage in China[J]. China Civil Engineering Journal, 2017(S1): 76-81.
    王广华,李文涛,陈贻龙,等. 广州市东濠涌深层排水隧道工程前期研究[J]. 中国给水排水,2016,32(22): 7-13.

    WANG Guanghua, LI Wentao, CHEN Yilong, et al. Preliminary study on deep tunnel drainage engineering at Donghao Creek in Guangzhou[J]. China Water & Wastewater, 2016, 32(22): 7-13.
    ODGAARD A J, LYONS T C, CRAIG A J. Baffle drop structure design relationships[J]. Journal of Hydraulic Engineering, 2013, 139(9): 995-1002. doi: 10.1061/(ASCE)HY.1943-7900.0000761
    王志刚,张东,张宏伟,等. 折板消能竖井中的折板功能分析[J]. 中国水利水电科学研究院学报,2015,13(4): 270-276.

    WANG Zhigang, ZHANG Dong, ZHANG Hongwei, et al. Functions of baffles in baffle-drop shaft[J]. Journal of China Institute of Water Resources and Hydropower Research, 2015, 13(4): 270-276.
    王志刚,张东,张宏伟. 折板消能竖井水力转捩特征研究[J]. 水利水电技术,2015,46(12): 44-47.

    WANG Zhigang, ZHANG Dong, ZHANG Hongwei. Study on hydraulic transition characteristics of baffle-drop shaft[J]. Water Resources and Hydropower Engineering, 2015, 46(12): 44-47.
    王斌, 邓家泉, 何贞俊, 等. 折板跌落式竖井设计约束条件研究[J]. 中国水利水电科学研究院学报, 2015, 13(5): 363-367.

    WANG Bin, DENG Jiaquan, HE Zhenjun, et al. A study on design constraints for baffle-drop shaft structure[J]. Journal of China Institute of Water Resources and Hydropower Research, 2015, 13(5): 363-367.
    王斌, 邓家泉, 何贞俊, 等. 折板竖井结构优化试验研究[C]//第二十七届全国水动力学研讨会. 北京: 海洋出版社, 2015: 455-461.
    MARGEVICIUS A, SCHREIBER A, SWITALSKI R, et al. A baffling solution to a complex problem involving sewage drop structures[J]. Proceedings of the Water Environment Federation, 2010, 2010(6): 1-9. doi: 10.2175/193864710798216279
    何贞俊,王斌,杨聿,等. 市政排水系统中竖井研究及应用进展[J]. 中国给水排水,2017(10): 49-53.

    HE Zhenjun, WANG Bin, YANG Yu, et al. Review on vertical shaft in urban wastewater drainage system[J]. China Water & Wastewater, 2017(10): 49-53.
    刘家宏, 夏霖, 王浩, 等. 城市深隧排水系统典型案例分析[J]. 科学通报, 2017, 62(27): 3269-3276.

    LIU Jiahong, XIA Lin, WANG Hao, et al. Typical case analysis of deep tunnel drainage system in urban area[J]. Chinese Science Bulletin, 2017, 62(27): 3269-3276.
    禹华谦, 陈春光, 麦继婷. 工程流体力学[M]. 成都: 西南交通大学出版社, 2013: 265.
    中华人民共和国行业标准. 锅炉人孔和手孔装置: NB/T 47040—2013[S]. 北京: 新华出版社, 2013.
    中华人民共和国船舶行业标准. 船用人孔盖: CB/T 4392—2014[S]. 北京: 中国船舶工业综合技术经济研究院, 2014.
    中华人民共和国通信行业标准. 通信管道人孔和手孔图集: YD 5178—2009[S]. 北京: 北京邮电大学出版社, 2009.
  • Relative Articles

    [1]CAI Xiaopei, WANG Changchang, DONG Bo, CHEN Zelin, ZHANG Qian. Analysis of Longitudinal Force Distribution Characteristics and Arching Mechanism of Longitudinally Connected Track Slabs in Bridge-Subgrade Transition Section[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230424
    [2]HE Mingzhi, LIN Runze, ZHOU Shuhan, FENG Pei, LI Huan, WANG Dengfeng. Current-Mode Variable Frequency Control Technique for Single-Inductor Dual-Output Switching Converter with Independent Charge and Discharge Sequence[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 980-989. doi: 10.3969/j.issn.0258-2724.20220535
    [3]DONG Bingjie, CHEN Guangxiong, FENG Xiaohang, REN Wenjuan, SONG Qifeng, MEI Guiming. Vibration Fatigue Fracture Mechanism of e-Type Clip Under Rail Corrugation Excitation[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230707
    [4]WANG Yiran, YU Xiaodong, LIU Jiachun, ZHANG Jian, XU Hui. Multiple-Mode Transient Inflow Impact with Entrapped Air Pocket in Deep Storage Tunnel Systems[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 685-690. doi: 10.3969/j.issn.0258-2724.20211053
    [5]YANG Qian, YANG Qinghua, CHEN Feng, NIU Bingkun. Experimental Study on Hydraulic Characteristics in Baffle-Drop Shaft During Gas Explosion[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1026-1036. doi: 10.3969/j.issn.0258-2724.20220163
    [6]ZHANG Chunxiang, TANG Libo, GAO Xueyao. Word Sense Disambiguation Based on Semi-Supervised Convolutional Neural Networks[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 11-17, 27. doi: 10.3969/j.issn.0258-2724.20200105
    [7]QIAO Qingfeng, YANG Weidong, ZHU Qi, CHEN Guangxiong. Generation Mechanism of Railway Disc Brake Squeal and Its Suppression Method[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 62-67. doi: 10.3969/j.issn.0258-2724.20190799
    [8]ZHANG Chunxiang, XU Zhifeng, GAO Xueyao. Semi-Supervised Method for Chinese Word Sense Disambiguation[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 408-414. doi: 10.3969/j.issn.0258-2724.20170178
    [9]ZHU Yongjian, ZHAO Guotang. Change Rule of Crack Widths of CRTSⅡTrack Slab[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 351-358. doi: 10.3969/j.issn.0258-2724.20170201
    [10]WEN Desheng, LIU Chunxiao, WANG Lei, ZHENG Wei, ZHAO Zhengpeng. Analysis of Flow Characteristics of Asymmetric Cam-Rotor Double Stator Pump[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 962-970. doi: 10.3969/j.issn.0258-2724.20170723
    [11]JIANG Hong, QIAN Kuan, ZHU Chao, SUN Yuzhou. Characteristics of Ride Comfort and Torsion Elimination of Four-Corner Interconnected Air Suspension System[J]. Journal of Southwest Jiaotong University, 2015, 28(6): 1106-1113. doi: 10.3969/j.issn.0258-2724.2015.06.019
    [12]TAN Ping, FANG Chuangjie, WANG Lei, ZHOU Fulin. Dynamic Reliability of Novel Damped Outrigger System[J]. Journal of Southwest Jiaotong University, 2014, 27(1): 33-38,65. doi: 10.3969/j.issn.0258-2724.2014.01.006
    [13]SHAO Yongbo, WANG Wenjie, CHEN Ying. Experimental Study on Hysteretic Behavior of Square Tubular T-Joints Reinforced with Collar Plate[J]. Journal of Southwest Jiaotong University, 2013, 26(1): 75-80. doi: 10.3969/j.issn.0258-2724.2013.01.012
    [14]WANG Xin, WANG Wei, LI Wenquan, CHENG Lin. Interpretation of Traffic Flow Breakdown with Density-Flow Model[J]. Journal of Southwest Jiaotong University, 2009, 22(1): 141-146.
    [15]WANG Chen, LIUHao-wu, XUQiang. Modified Mesri s Creep Model for Soils in Sliding Zone of Xietan Landslide in the Three Gorges[J]. Journal of Southwest Jiaotong University, 2004, 17(1): 15-19.
  • Cited by

    Periodical cited type(7)

    1. 王斌,李进平,程永光. 深隧排水系统水舌对冲式入流竖井设计研究. 中国农村水利水电. 2023(03): 138-143 .
    2. 杨庆华,陈峰,杨乾,牛丙坤. 气爆危害对深隧竖井折板荷载的影响分析. 安全与环境学报. 2023(04): 1123-1129 .
    3. 芦三强,乔时雨. 跌流竖井结构优化及其气压特性数值模拟. 水利水电科技进展. 2023(06): 24-29+43 .
    4. 许靖航. 折板型消能竖井应用于山地城市排水系统. 净水技术. 2022(01): 135-139+172 .
    5. 陈珺,陆迎香,唐洪武,闫静. 新型对称折板式竖井水力特性. 水动力学研究与进展A辑. 2022(01): 73-83 .
    6. 杨乾,杨庆华,赵子成,林宏,尧远,牟祎. 泄流过程中折板型竖井水气两相流动特性研究. 工程科学与技术. 2021(01): 75-84 .
    7. 杨乾,杨庆华. 竖井消能工折板压强及脉动特性分析. 中国安全生产科学技术. 2021(06): 12-18 .

    Other cited types(8)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0301020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 37.8 %FULLTEXT: 37.8 %META: 59.8 %META: 59.8 %PDF: 2.4 %PDF: 2.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.9 %其他: 6.9 %其他: 1.5 %其他: 1.5 %Auckland: 0.3 %Auckland: 0.3 %Caserta: 0.3 %Caserta: 0.3 %Central District: 0.3 %Central District: 0.3 %Monticelli Terme: 0.5 %Monticelli Terme: 0.5 %Taoyuan District: 0.9 %Taoyuan District: 0.9 %上海: 1.4 %上海: 1.4 %东莞: 1.4 %东莞: 1.4 %临汾: 0.3 %临汾: 0.3 %内江: 0.3 %内江: 0.3 %北京: 1.5 %北京: 1.5 %南京: 0.3 %南京: 0.3 %合肥: 0.2 %合肥: 0.2 %哥伦布: 0.3 %哥伦布: 0.3 %大连: 0.5 %大连: 0.5 %天津: 0.5 %天津: 0.5 %奥克兰: 0.9 %奥克兰: 0.9 %宜昌: 0.2 %宜昌: 0.2 %宣城: 0.2 %宣城: 0.2 %布里斯班: 0.5 %布里斯班: 0.5 %广州: 0.2 %广州: 0.2 %延安: 0.2 %延安: 0.2 %张家口: 1.7 %张家口: 1.7 %成都: 3.1 %成都: 3.1 %扬州: 0.2 %扬州: 0.2 %新竹: 0.5 %新竹: 0.5 %无锡: 0.3 %无锡: 0.3 %杭州: 0.3 %杭州: 0.3 %格兰特县: 0.2 %格兰特县: 0.2 %池州: 0.3 %池州: 0.3 %沈阳: 0.2 %沈阳: 0.2 %洛桑: 0.5 %洛桑: 0.5 %洛阳: 0.3 %洛阳: 0.3 %深圳: 0.2 %深圳: 0.2 %漯河: 0.5 %漯河: 0.5 %石家庄: 0.2 %石家庄: 0.2 %芒廷维尤: 33.8 %芒廷维尤: 33.8 %芝加哥: 0.7 %芝加哥: 0.7 %葵涌: 0.2 %葵涌: 0.2 %衡阳: 0.3 %衡阳: 0.3 %西宁: 31.3 %西宁: 31.3 %西安: 0.7 %西安: 0.7 %贵阳: 0.2 %贵阳: 0.2 %赣州: 0.2 %赣州: 0.2 %运城: 0.5 %运城: 0.5 %重庆: 0.2 %重庆: 0.2 %长沙: 2.4 %长沙: 2.4 %青岛: 0.3 %青岛: 0.3 %香港: 0.9 %香港: 0.9 %其他其他AucklandCasertaCentral DistrictMonticelli TermeTaoyuan District上海东莞临汾内江北京南京合肥哥伦布大连天津奥克兰宜昌宣城布里斯班广州延安张家口成都扬州新竹无锡杭州格兰特县池州沈阳洛桑洛阳深圳漯河石家庄芒廷维尤芝加哥葵涌衡阳西宁西安贵阳赣州运城重庆长沙青岛香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article views(784) PDF downloads(17) Cited by(15)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return