• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
WANG Zicheng, ZHANG Yadong, GUO Jin, SU Lina, YANG Jing, SONG Ci, LI Kehong. Fault Diagnosis for Track Circuit Based on Interval Type-2 Neural-Fuzzy System[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 190-196. doi: 10.3969/j.issn.0258-2724.20180983
Citation: WANG Zicheng, ZHANG Yadong, GUO Jin, SU Lina, YANG Jing, SONG Ci, LI Kehong. Fault Diagnosis for Track Circuit Based on Interval Type-2 Neural-Fuzzy System[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 190-196. doi: 10.3969/j.issn.0258-2724.20180983

Fault Diagnosis for Track Circuit Based on Interval Type-2 Neural-Fuzzy System

doi: 10.3969/j.issn.0258-2724.20180983
  • Received Date: 13 Nov 2018
  • Rev Recd Date: 17 May 2019
  • Available Online: 18 Aug 2020
  • Publish Date: 01 Feb 2021
  • At present, the threshold method, despite its low efficiency, has still been used to identify the fault of track circuit on site. To handle this, an interval type-2 neural-fuzzy system (IT2NFS) was built by combining neural networks and fuzzy logic. Intelligent identification of failure modes was realized by constructing a diagnostic model. During the construction of the diagnostic model, a preliminary network structure was established through the structure identification. Uniform design method was used to generate the mean values of fuzzy sets. Then the standard deviations and initial consequent parameters were generated through performing a similarity test on training samples. At last, the optimized consequent parameters were obtained by recursive singular value decomposition to reduce the output error. For 8 common failures, a total of 9000 samples were collected from the test platform. Of them, 6300 samples were used for model training, the rest 2700 samples were used for testing. The test results show that when using the IT2NFS model for fault diagnosis, the recognition rate of each fault category was above 82%, the average correct rate was 90.9%, and the simulation time was only 10.59 s.

     

  • 武星星. 模糊系统和ANFIS的改进及其在加工参数智能选择中的应用研究[D] 吉林: 吉林大学, 2007.
    JANG J S R, SUN C T. Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence[M]. New Jersey: Prentice-Hall, Inc., 1996: 81-102.
    CHEN J, ROBERTS C, WESTON P. Fault detection and diagnosis for railway track circuits using neuro-fuzzy systems[J]. Control Engineering Practice, 2008, 16(5): 585-596. doi: 10.1016/j.conengprac.2007.06.007
    SANDIDZADEH M A, DEHGHANI M. Intelligent condition monitoring of railway signaling in train detection subsystems[M]. Amsterdam: IOS Press, 2013: 859-869.
    黄赞武,魏学业,刘泽. 基于模糊神经网络的轨道电路故障诊断方法研究[J]. 铁道学报,2012,34(11): 54-59. doi: 10.3969/j.issn.1001-8360.2012.11.009

    HUANG Zanwu, WEI Xueye, LIU Ze. Fault diagnosis of railway track circuits using fuzzy neural network[J]. Journal of the China Railway Society, 2012, 34(11): 54-59. doi: 10.3969/j.issn.1001-8360.2012.11.009
    ZADEH L A. Fuzzy sets[J]. Information & Control, 1965, 8(3): 338-353.
    MENDEL J M. Type-2 fuzzy sets and system:an overview[J]. IEEE Computational Intelligence Magazine, 2007, 2(1): 20-29. doi: 10.1109/MCI.2007.380672
    ZADEH L A. The concept of a linguistic variable and its application to approximate reasoning– I[J]. Information Sciences, 1975, 8(3): 199-249. doi: 10.1016/0020-0255(75)90036-5
    KARNIK N N, MENDEL J M, LIANG Q. Type-2 fuzzy logic systems[J]. IEEE Transactions on Fuzzy Systems, 1999, 7(6): 643-658. doi: 10.1109/91.811231
    BEGIAN M B, MELEK W W, MENDEL J M. Stability analysis of type-2 fuzzy systems[C]//2008 IEEE International Conference on Fuzzy Systems. Hongkong: IEEE, 2008: 50-78.
    FANG K T, MA C, WINKER P, et al. Uniform design:theory and application[J]. Technometrics, 2000, 42(3): 237-248. doi: 10.1080/00401706.2000.10486045
    HUANG S, ZHAO G, CHEN M. Uniform design-based interval type-2 neuro-fuzzy system and its performance verification[J]. International Journal of Fuzzy Systems, 2018, 20(6): 1-18.
    FANG K T, LIN D K J. Uniform experimental designs and their applications in industry[J]. Handbook of Statistics, 2003, 22(3): 131-170.
    HUANG S, CHEN M. Constructing optimized interval type-2 TSK neuro-fuzzy systems with noise reduction property by quantum inspired BFA[J]. Neurocomputing, 2016, 173(3): 1839-1850.
    LEE S J, OUYANG C S. A neuro-fuzzy system modeling with self-constructing rule generationand hybrid SVD-based learning[J]. IEEE Transactions on Fuzzy Systems, 2003, 11(3): 341-353. doi: 10.1109/TFUZZ.2003.812693
    黄沙日娜. 二型模糊系统建模及其优化问题研究[D] 哈尔滨: 哈尔滨工业大学, 2018.
    王梓丞,张亚东,郭进,等. 基于Simulink的ZPW-2000轨道电路仿真分析[J]. 现代电子技术,2017,40(6): 79-83.

    WANG Zicheng, ZHANG Yadong, GUO Jin, et al. ZPW-2000 track circuit simulation analysis based on Simulink[J]. Modern Electronics Technique, 2017, 40(6): 79-83.
  • Relative Articles

    [1]YANG Shiwu, CHEN Bingjun, CHEN Haikang, CUI Yong, TANG Qiankun. Suppression Solutions to Transient Traction Current Interference in Neutral Zone for Track Circuit[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1332-1341. doi: 10.3969/j.issn.0258-2724.20180692
    [2]WANG Zicheng, GUO Jin, ZHANG Yadong, SU Lina, SUN Ningxian, CHEN Mingbao. Transient Analysis of ZPW-2000 Track Circuit Based on FDTD Interface Method[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 196-201, 218. doi: 10.3969/j.issn.0258-2724.20180020
    [3]MAO Run, GAO Hongli, SONG Xingguo. RBF Neural Network Robot Manipulator Control Based on Fuzzy Compensation[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 638-645. doi: 10.3969/j.issn.0258-2724.2018.03.027
    [4]SUN Yue, TAN Jingjing, TANG Chunsen. Physical Modeling of IGBT and Its Parameter Identification Method Based on Neural Network[J]. Journal of Southwest Jiaotong University, 2015, 28(6): 1143-1149,1163. doi: 10.3969/j.issn.0258-2724.2015.06.024
    [5]ZHENG Weifan, ZHANG Jiye. Stability of High Order Fuzzy Cohen-Grossberg Neural Networks with Unbounded Time Delays[J]. Journal of Southwest Jiaotong University, 2014, 27(6): 1052-1060. doi: 10.3969/j.issn.0258-2724.2014.06.017
    [6]XIE Feng, MA Zhimin, LUAN Weidong. Quality Evaluation of Expressway Pavement Based on Fuzzy Neural Networks[J]. Journal of Southwest Jiaotong University, 2013, 26(1): 160-164. doi: 10.3969/j.issn.0258-2724.2013.01.025
    [7]ZHAO Lin-Hai, MU Jian-Cheng. Fault Diagnosis Method for Jointless Track Circuit Based on AOK-TFR[J]. Journal of Southwest Jiaotong University, 2011, 24(1): 84-91. doi: 10.3969/j.issn.0258-2724.2011.01.013
    [8]REN Xinxin, LI Qiang, WU Zhenye. Computer Aided Decision-Making System for Staff Promotion Based on Fuzzy Neural Network[J]. Journal of Southwest Jiaotong University, 2006, 19(2): 245-249.
    [9]HE Chuan, LIZu-wei, FANG Yong, WANGMing-nian. Feed-Forward Intelligent Fuzzy Logic Control of H ighway TunnelVentilation System[J]. Journal of Southwest Jiaotong University, 2005, 18(5): 575-579.
    [10]CHEN Shan, WANG Tai-yong, WANG Guo-feng, QINXu-da. Intelligent Fault Diagnosis, Prediction and Maintenance System of Mechanical Equipment[J]. Journal of Southwest Jiaotong University, 2003, 16(5): 540-543.
    [11]PEI Zheng, HUANG Tian-min. Input Resolution on Horn Sets Based on Fuzzy Neural Networks[J]. Journal of Southwest Jiaotong University, 2002, 15(5): 565-569.
    [12]GUANQin-chuan. Fuzzy Multi-objective Optimization Based on Neural Networks[J]. Journal of Southwest Jiaotong University, 2002, 15(3): 338-342.
    [13]PEI Dao-wu, WANG Guo-jun. A New Kind of Algebraic Systems for Fuzzy Logic[J]. Journal of Southwest Jiaotong University, 2000, 13(5): 564-568.
  • Cited by

    Periodical cited type(10)

    1. 崔铁军,李莎莎. 量子态叠加的事件发生柔性逻辑统一表达式研究. 西北工业大学学报. 2024(04): 774-782 .
    2. 陈光武,陈俊,石建强,李鹏. 基于时频增强残差网络的补偿电容故障诊断方法. 北京交通大学学报. 2024(05): 130-141 .
    3. 杨璟,郑启明,姚新文,陈光武,王小敏. 基于深度网络的轨道电路暂态特征多补偿电容故障定位. 铁道科学与工程学报. 2023(07): 2653-2663 .
    4. 王圣根,杨向波. 基于信号集中监测系统的边界轨道红光带判断方法研究. 铁道通信信号. 2023(10): 80-85+90 .
    5. 宋国经. ZPW-2000型移频轨道电路在既有线应用方案研究. 铁道建筑技术. 2023(12): 121-124 .
    6. 邓阳,陈洪根,黄春雷,禹建丽. 基于数值分析和神经网络的轨道过车信号判断. 郑州航空工业管理学院学报. 2022(01): 106-112 .
    7. 邢玉龙,王剑,上官伟,彭聪,朱林富. 面向海量不平衡数据的轨道电路故障诊断方法. 中国安全科学学报. 2022(05): 112-118 .
    8. 陈洪根,李诗宇,邓阳,禹建丽,黄春雷. 基于卷积神经网络的ZPW-2000R轨道电路运行状态智能识别. 郑州航空工业管理学院学报. 2022(04): 76-82 .
    9. 李长春,赵林海. 基于LightGBM算法的25Hz相敏轨道电路故障诊断方法优化. 铁道学报. 2022(08): 68-77 .
    10. 陈光武,高亚丽,焦相萌. 基于自适应变异SAPSO-LSSVM的轨道电路故障诊断. 北京交通大学学报. 2021(02): 1-7 .

    Other cited types(17)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0305101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 42.8 %FULLTEXT: 42.8 %META: 52.5 %META: 52.5 %PDF: 4.7 %PDF: 4.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.2 %其他: 6.2 %China: 0.4 %China: 0.4 %上海: 0.6 %上海: 0.6 %临汾: 0.4 %临汾: 0.4 %兰州: 0.2 %兰州: 0.2 %凉山: 0.4 %凉山: 0.4 %北京: 5.6 %北京: 5.6 %十堰: 0.2 %十堰: 0.2 %南京: 0.8 %南京: 0.8 %南通: 0.2 %南通: 0.2 %台州: 0.2 %台州: 0.2 %呼和浩特: 0.4 %呼和浩特: 0.4 %哥伦布: 0.4 %哥伦布: 0.4 %大连: 0.4 %大连: 0.4 %天水: 0.2 %天水: 0.2 %宣城: 0.2 %宣城: 0.2 %广州: 0.4 %广州: 0.4 %张家口: 1.7 %张家口: 1.7 %成都: 7.2 %成都: 7.2 %扬州: 0.4 %扬州: 0.4 %无锡: 0.2 %无锡: 0.2 %昆明: 0.6 %昆明: 0.6 %杭州: 0.2 %杭州: 0.2 %柳州: 0.2 %柳州: 0.2 %池州: 1.4 %池州: 1.4 %沈阳: 0.2 %沈阳: 0.2 %洛阳: 0.2 %洛阳: 0.2 %温州: 0.2 %温州: 0.2 %漯河: 0.4 %漯河: 0.4 %石家庄: 0.4 %石家庄: 0.4 %绍兴: 0.2 %绍兴: 0.2 %芒廷维尤: 17.8 %芒廷维尤: 17.8 %芝加哥: 0.6 %芝加哥: 0.6 %西宁: 46.3 %西宁: 46.3 %西安: 0.4 %西安: 0.4 %诺沃克: 0.4 %诺沃克: 0.4 %贵阳: 0.4 %贵阳: 0.4 %运城: 1.2 %运城: 1.2 %郑州: 1.6 %郑州: 1.6 %长沙: 1.0 %长沙: 1.0 %其他China上海临汾兰州凉山北京十堰南京南通台州呼和浩特哥伦布大连天水宣城广州张家口成都扬州无锡昆明杭州柳州池州沈阳洛阳温州漯河石家庄绍兴芒廷维尤芝加哥西宁西安诺沃克贵阳运城郑州长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article views(651) PDF downloads(25) Cited by(27)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return