• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 56 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
WANG Zicheng, ZHANG Yadong, GUO Jin, SU Lina, YANG Jing, SONG Ci, LI Kehong. Fault Diagnosis for Track Circuit Based on Interval Type-2 Neural-Fuzzy System[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 190-196. doi: 10.3969/j.issn.0258-2724.20180983
Citation: WANG Zicheng, ZHANG Yadong, GUO Jin, SU Lina, YANG Jing, SONG Ci, LI Kehong. Fault Diagnosis for Track Circuit Based on Interval Type-2 Neural-Fuzzy System[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 190-196. doi: 10.3969/j.issn.0258-2724.20180983

Fault Diagnosis for Track Circuit Based on Interval Type-2 Neural-Fuzzy System

doi: 10.3969/j.issn.0258-2724.20180983
  • Received Date: 13 Nov 2018
  • Rev Recd Date: 17 May 2019
  • Available Online: 18 Aug 2020
  • Publish Date: 01 Feb 2021
  • At present, the threshold method, despite its low efficiency, has still been used to identify the fault of track circuit on site. To handle this, an interval type-2 neural-fuzzy system (IT2NFS) was built by combining neural networks and fuzzy logic. Intelligent identification of failure modes was realized by constructing a diagnostic model. During the construction of the diagnostic model, a preliminary network structure was established through the structure identification. Uniform design method was used to generate the mean values of fuzzy sets. Then the standard deviations and initial consequent parameters were generated through performing a similarity test on training samples. At last, the optimized consequent parameters were obtained by recursive singular value decomposition to reduce the output error. For 8 common failures, a total of 9000 samples were collected from the test platform. Of them, 6300 samples were used for model training, the rest 2700 samples were used for testing. The test results show that when using the IT2NFS model for fault diagnosis, the recognition rate of each fault category was above 82%, the average correct rate was 90.9%, and the simulation time was only 10.59 s.

     

  • loading
  • 武星星. 模糊系统和ANFIS的改进及其在加工参数智能选择中的应用研究[D] 吉林: 吉林大学, 2007.
    JANG J S R, SUN C T. Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence[M]. New Jersey: Prentice-Hall, Inc., 1996: 81-102.
    CHEN J, ROBERTS C, WESTON P. Fault detection and diagnosis for railway track circuits using neuro-fuzzy systems[J]. Control Engineering Practice, 2008, 16(5): 585-596. doi: 10.1016/j.conengprac.2007.06.007
    SANDIDZADEH M A, DEHGHANI M. Intelligent condition monitoring of railway signaling in train detection subsystems[M]. Amsterdam: IOS Press, 2013: 859-869.
    黄赞武,魏学业,刘泽. 基于模糊神经网络的轨道电路故障诊断方法研究[J]. 铁道学报,2012,34(11): 54-59. doi: 10.3969/j.issn.1001-8360.2012.11.009

    HUANG Zanwu, WEI Xueye, LIU Ze. Fault diagnosis of railway track circuits using fuzzy neural network[J]. Journal of the China Railway Society, 2012, 34(11): 54-59. doi: 10.3969/j.issn.1001-8360.2012.11.009
    ZADEH L A. Fuzzy sets[J]. Information & Control, 1965, 8(3): 338-353.
    MENDEL J M. Type-2 fuzzy sets and system:an overview[J]. IEEE Computational Intelligence Magazine, 2007, 2(1): 20-29. doi: 10.1109/MCI.2007.380672
    ZADEH L A. The concept of a linguistic variable and its application to approximate reasoning– I[J]. Information Sciences, 1975, 8(3): 199-249. doi: 10.1016/0020-0255(75)90036-5
    KARNIK N N, MENDEL J M, LIANG Q. Type-2 fuzzy logic systems[J]. IEEE Transactions on Fuzzy Systems, 1999, 7(6): 643-658. doi: 10.1109/91.811231
    BEGIAN M B, MELEK W W, MENDEL J M. Stability analysis of type-2 fuzzy systems[C]//2008 IEEE International Conference on Fuzzy Systems. Hongkong: IEEE, 2008: 50-78.
    FANG K T, MA C, WINKER P, et al. Uniform design:theory and application[J]. Technometrics, 2000, 42(3): 237-248. doi: 10.1080/00401706.2000.10486045
    HUANG S, ZHAO G, CHEN M. Uniform design-based interval type-2 neuro-fuzzy system and its performance verification[J]. International Journal of Fuzzy Systems, 2018, 20(6): 1-18.
    FANG K T, LIN D K J. Uniform experimental designs and their applications in industry[J]. Handbook of Statistics, 2003, 22(3): 131-170.
    HUANG S, CHEN M. Constructing optimized interval type-2 TSK neuro-fuzzy systems with noise reduction property by quantum inspired BFA[J]. Neurocomputing, 2016, 173(3): 1839-1850.
    LEE S J, OUYANG C S. A neuro-fuzzy system modeling with self-constructing rule generationand hybrid SVD-based learning[J]. IEEE Transactions on Fuzzy Systems, 2003, 11(3): 341-353. doi: 10.1109/TFUZZ.2003.812693
    黄沙日娜. 二型模糊系统建模及其优化问题研究[D] 哈尔滨: 哈尔滨工业大学, 2018.
    王梓丞,张亚东,郭进,等. 基于Simulink的ZPW-2000轨道电路仿真分析[J]. 现代电子技术,2017,40(6): 79-83.

    WANG Zicheng, ZHANG Yadong, GUO Jin, et al. ZPW-2000 track circuit simulation analysis based on Simulink[J]. Modern Electronics Technique, 2017, 40(6): 79-83.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article views(622) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return