• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
ZHANG Liyan, CHEN Yingyue, HAN Zhengqing. Traction Load Classification Method Based on Improved Clustering Method[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 27-33, 40. doi: 10.3969/j.issn.0258-2724.20180513
Citation: ZHANG Liyan, CHEN Yingyue, HAN Zhengqing. Traction Load Classification Method Based on Improved Clustering Method[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 27-33, 40. doi: 10.3969/j.issn.0258-2724.20180513

Traction Load Classification Method Based on Improved Clustering Method

doi: 10.3969/j.issn.0258-2724.20180513
  • Received Date: 09 Jul 2018
  • Rev Recd Date: 11 Oct 2018
  • Available Online: 13 Nov 2018
  • Publish Date: 01 Feb 2020
  • In order to obtain more accurate traction load classification, based on a large amount of measured traction load data, an improved fuzzy C-means clustering method is proposed, which can automatically obtain the best classification number. A charged effective coefficient, the maximum value, the average value, the value of 95% and one to five order moments were chosen as clustering indicators to classify feeder current. Then the probability density function of traction loads was fitted using non-parametric kernel density estimation, and the probability distribution model of each feeder current type was obtained. The results show that the characteristic parameters and probability distributions of the traction loads that were clustered together are.

     

  • 李群湛. 电气化铁道并联综合补偿及其应用[M]. 北京: 中国铁道出版社, 1993: 10-46.
    刘思,傅旭华,叶承晋,等. 应用聚类分析与非参数核密度估计的空间负荷分布规律[J]. 电网技术,2017,41(2): 604-610.

    LIU Si, FU Xunhua, YE Chengjin, et al. Spatial load distribution based on clustering analysis and non-parametric kernel density estimation[J]. Power System Technology, 2017, 41(2): 604-610.
    张斌,庄池杰,胡军,等. 结合降维技术的电力负荷曲线集成聚类算法[J]. 中国电机工程学报,2015,35(15): 3741-3749.

    ZHANG Bin, ZHUANG Chijie, HU Jun, et al. Ensemble clustering algorithm combined with dimension reduction techniques for power load profiles[J]. Proceedings of the CSEE, 2015, 35(15): 3741-3749.
    林顺富,田二伟,符杨,等. 基于信息熵分段聚合近似和谱聚类的负荷分类方法[J]. 中国电机工程学报,2017,37(8): 2242-2253.

    LIN Shunfu, TIAN Erwei, FU Yang, et al. Power load classification method based on information entropy piecewise aggregate approximation and spectral clustering[J]. Proceedings of the CSEE, 2017, 37(8): 2242-2253.
    苏学能,刘天琪,曹鸿谦,等. 基于Hadoop架构的多重分布式BP神经网络的短期负荷预测方法[J]. 中国电机工程学报,2017,37(17): 4966-4973,5216.

    SU Xueneng, LIU Tianqi, CAO Hongqian, et al. A multiple distributed bp neural networks approach for short-term load forecasting based on Hadoop framework[J]. Proceedings of the CSEE, 2017, 37(17): 4966-4973,5216.
    沈沉,秦建,盛万兴,等. 基于小波聚类的配变短期负荷预测方法研究[J]. 电网技术,2016,40(2): 521-526.

    SHEN Chen, QIN Jian, SHENG Wanxing, et al. Study on short-term forecasting of distribution transformer load using wavelet and clustering method[J]. Power System Technology, 2016, 40(2): 521-526.
    张丽艳,李群湛,朱毅. 新建电气化铁路牵引负荷预测[J]. 西南交通大学学报,2016,51(4): 743-749. doi: 10.3969/j.issn.0258-2724.2016.04.020

    ZHANG Liyan, LI Qunzhan, ZHU Yi. Prediction of traction load for new electrified railway[J]. Journal of Southwest Jiaotong University, 2016, 51(4): 743-749. doi: 10.3969/j.issn.0258-2724.2016.04.020
    石若颖. 新建电气化铁路牵引负荷统计预测研究[D]. 成都: 西南交通大学, 2017.
    陈玉祥, 张汉亚. 预测技术与应用[M]. 北京: 机械工业出版社, 1985: 98-109.
    陈立周, 何晓峰, 翁海珊. 工程随机变量优化方法设计原理与应用[M]. 北京: 科学出版社, 1997: 45-67.
    杨浩,张磊,何潜,等. 基于自适应模糊C均值算法的电力负荷分类研究[J]. 电力系统保护与控制,2010,38(16): 111-115,122. doi: 10.7667/j.issn.1674-3415.2010.16.022

    YANG Hao, ZHANG Lei, HE Qian, et al. Study of power load classification based on adaptive fuzzy C means[J]. Power System Protection and Control, 2010, 38(16): 111-115,122. doi: 10.7667/j.issn.1674-3415.2010.16.022
    许国根, 贾瑛著. 实战大数据——MATLAB数据挖掘详解与实践[M]. 清华大学出版社, 2017: 57-78.
    张丽艳,李群湛,解绍锋. 牵引变电所馈线电流的概率模型[J]. 西南交通大学学报,2009,42(6): 848-854. doi: 10.3969/j.issn.0258-2724.2009.06.009

    ZHANG Liyan, LI Qunzhan, XIE Shaofeng. Probability distribution of feeder current of traction substation[J]. Journal of Southwest Jiaotong University, 2009, 42(6): 848-854. doi: 10.3969/j.issn.0258-2724.2009.06.009
    周开乐,杨善林. 基于改进模糊C均值算法的电力负荷特性分类[J]. 电力系统保护与控制,2012,40(22): 58-63. doi: 10.7667/j.issn.1674-3415.2012.22.010

    ZHOU Kaile, YANG Shanlin. An improved fuzzy C-means algorithm for power load characteristics classification[J]. Power System Protection and Control, 2012, 40(22): 58-63. doi: 10.7667/j.issn.1674-3415.2012.22.010
    何友全,肖建,方磊. 数据挖掘技术及在铁道牵引供电系统中的应用[J]. 电气化铁道,2003(4): 5-8.

    HE Youquan, XIAO Jian, FANG Lei. Data mining technology and its application in railway traction power supply system[J]. Electric Railway, 2003(4): 5-8.
    解绍锋,李群湛,赵丽平. 电气化铁道牵引负载谐波分布特征与概率模型研究[J]. 中国电机工程学报,2005,25(16): 79-83. doi: 10.3321/j.issn:0258-8013.2005.16.015

    XIE Shaofeng, LI Qunzhan, ZHAO Liping. Study on harmonic distribution characteristic and probability model of the traction load of electrified railway[J]. Proceedings of the CSEE, 2005, 25(16): 79-83. doi: 10.3321/j.issn:0258-8013.2005.16.015
    陈民武,刘洋,韩旭东. 高速铁路牵引负荷谐波分布的非参数估计模型与预测评估研究[J]. 电网技术,2017,41(8): 2598-2603.

    CHEN Minwu, WU Yang, HAN Xudong. Harmonic prediction evaluation for high speed railway traction load[J]. Power System Technology, 2017, 41(8): 2598-2603.
    YUEN K H, YE Z M, PONG M H, et al. Modeling of traction harmonic current using statistical method[C]// Proceedings of the IEEE 1999 International Conference. [S.l.]: IEEE, 1999: 194-199.
    CHICCO G. Overview and performance assessment of the clustering methods for electrical load pattern grouping[J]. Energy, 2012, 42(1): 68-80. doi: 10.1016/j.energy.2011.12.031
    廖志伟,孙雅明. 数据挖掘技术及其在电力系统中的应用[J]. 电力系统自动化,2001,25(11): 62-66. doi: 10.3321/j.issn:1000-1026.2001.11.017

    LIAO Zhiwei, SUN Yaming. Data mining technology and its application in power system[J]. Automation of Electric Power Systems, 2001, 25(11): 62-66. doi: 10.3321/j.issn:1000-1026.2001.11.017
    PRAHASTONO I, KING D J, OZVEREN C S, et al. Electricity load profile classification using fuzzy C-means method[C]//The 43rd International Universities Power Engineering Conference, UPEC 2008. [S.l.]: IEEE, 2008: 1-5.
    DONG H B, DONG Y X, ZHOU C, et al. A fuzzy clustering algorithm based on evolutionary programming[J]. Expert Systems with Applications, 2009, 36(9): 11792-11800. doi: 10.1016/j.eswa.2009.04.031
    BAI Liyuan, HU Shengyan, LIU Suhua. A fuzzy clustering algorithm based on simulated annealing and genetic algorithm[J]. Computer Engineering and Application, 2005, 9(36): 56-57.
    XIE X L, BENI G A. Validity measure for fuzzy clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(8): 841-847. doi: 10.1109/34.85677
  • Relative Articles

    [1]ZHANG Liyan, LI Qunzhan, ZHU Yi. Prediction of Traction Load for New Electrified Railway[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 743-749. doi: 10.3969/j.issn.0258-2724.2016.04.020
    [2]YANG Junyi, CHEN Jianbing, LI Jie. Probability Density Evolution Analysis of Nonlinear Seismic Response of Structures with Random Parameters Following Different Distributions[J]. Journal of Southwest Jiaotong University, 2015, 28(6): 1047-1054. doi: 10.3969/j.issn.0258-2724.2015.06.010
    [3]PENG Yongbo, LI Jie. Probability Density Evolution Method of Nonlinear Random Vibration Analysis[J]. Journal of Southwest Jiaotong University, 2014, 27(2): 220-226. doi: 10.3969/j.issn.0258-2724.2014.02.006
    [4]LIU Zhangjun, XIONG Min, WAN Yong. Seismic Reliability Analysis of Continuous Rigid Frame Bridge Using Probability Density Evolution Method[J]. Journal of Southwest Jiaotong University, 2014, 27(1): 39-44. doi: 10.3969/j.issn.0258-2724.2014.01.007
    [5]LI Jinping, JIAO Shengjie, CHEN Jianjun, LIU Guoliang, XU Xinxin. Dimension-Reduction Method for Structural Reliability Analysis[J]. Journal of Southwest Jiaotong University, 2014, 27(1): 79-85. doi: 10.3969/j.issn.0258-2724.2014.01.013
    [6]SONG Pengyan, LÜ, Dagang, YU Xiaohui, WANG Guangyuan. Probability Density Evolution Analysis for Stochastic Dynamic Seismic Responses of Structures Based on Improved Point Estimation Method[J]. Journal of Southwest Jiaotong University, 2014, 27(2): 227-232. doi: 10.3969/j.issn.0258-2724.2014.02.007
    [7]WANG Zonghu, LIU Zhijing, CHEN Donghui. Two-Step Hybrid PSO-Based Clustering Algorithm[J]. Journal of Southwest Jiaotong University, 2012, 25(6): 1034-1040,1063. doi: 10.3969/j.issn.0258-2724.2012.06.020
    [8]YU Ningyu, MA Hongguang, SHI Rong, YUZ hibin. Parameter Estimation of Co-channel Multi-signals Based on Cyclic Spectrum Amplitude[J]. Journal of Southwest Jiaotong University, 2011, 24(2): 303-309. doi: 10.3969/j.issn.0258-2724.2011.02.021
    [9]LIU Ya-Mei, YANG Hong-Geng, MA Chao. New Estimation Method for Harmonic and Inter-Harmonic Parameters[J]. Journal of Southwest Jiaotong University, 2011, 24(4): 604-610. doi: 10.3969/j.issn.0258-2724.2011.04.013
    [10]YANG Yan, ZHANG Zhaotao. Clustering Method Combining Threshold Algorithm with Ant Colony Algorithm[J]. Journal of Southwest Jiaotong University, 2006, 19(6): 719-722,742.
    [11]WANG Xiaohong, WANG Xiaoru, LI Qunzhan. Algorithm for Visualization of Classification Results of Two-Category Data[J]. Journal of Southwest Jiaotong University, 2006, 19(3): 329-334.
    [12]RENDian-bo, ZHANG Ji-ye. G lobalExponential Stability of a C lass of Interconnected Large-Scale System swith Time Delays[J]. Journal of Southwest Jiaotong University, 2005, 18(3): 343-346.
    [13]YU Li-jian, YANG Hua. Information Fusion and Cluster Control System for Natural Gas Flow[J]. Journal of Southwest Jiaotong University, 2004, 17(3): 337-340.
    [14]LI Yu-qi. Necessary and Sufficient Condition for Identifying Independent Random Processes[J]. Journal of Southwest Jiaotong University, 2003, 16(6): 699-702.
    [15]Liu Haiyan, Zhao Lianwen. Structure and Consistent of the Non-Parametric Kernel Density Estimation[J]. Journal of Southwest Jiaotong University, 1999, 12(3): 360-364.
  • Cited by

    Periodical cited type(13)

    1. 李明轩,李峰,颜培培,叶波. 计及等效负荷密度的变电站设备故障缺陷识别仿真. 微型电脑应用. 2024(05): 120-123 .
    2. 黄晨宏,郑真,何之倬,牟锴,张堰华. 基于大数据的新能源配电网短期运行可靠性研究. 自动化仪表. 2024(11): 91-95+100 .
    3. 李宁,蒋玲,潘东旭,李帅,任瑞. 高铁动态牵引负荷预测研究. 河北北方学院学报(自然科学版). 2024(07): 34-41 .
    4. 车玉龙,吕晓琴,王晓茹. 考虑相关性的牵引负荷功率对电网影响概率分析. 中国电机工程学报. 2022(09): 3250-3261 .
    5. 李文峰,邓晓平,彭伟,孟宋萍. 基于自学习边权重图卷积网络的用户用能分类. 计算机系统应用. 2022(09): 294-299 .
    6. 卢锦玲,张梦雪,郭鲁豫. 基于GAN的不平衡负荷数据类型辨识方法. 电力科学与工程. 2021(06): 26-34 .
    7. 刘辉,曾鹏飞. 基于WGRA-FCM样本相似性度量的转炉炼钢终点碳温软测量方法. 控制与决策. 2021(09): 2170-2178 .
    8. 孔宗泽,张丽艳,李群湛. 系统聚类在牵引负荷分类上的应用. 电力系统及其自动化学报. 2020(02): 61-67 .
    9. 张丽艳,孔宗泽,边力丁. 新建牵引变电所的负荷预测及变压器容量优化配置. 西南交通大学学报. 2020(04): 847-855 . 本站查看
    10. 唐子卓,刘洋,许立雄,郭久亿. 基于负荷数据频域特征和LSTM网络的类别不平衡负荷典型用电模式提取方法. 电力建设. 2020(08): 17-24 .
    11. 苏明亮. 基于大数据的重载列车乘务员操纵行为诊断系统研究. 机车电传动. 2020(04): 65-69 .
    12. 车玉龙,王晓茹,吕晓琴,康永强. 基于最优箱宽直方图的牵引变电所负荷概率建模方法. 电力自动化设备. 2020(12): 186-194 .
    13. 孙丽敬,盛万兴,吴鸣,吕志鹏,李蕊,李冬森,李运兵. 基于模糊C均值聚类的分布式电源集群并网逆变器输出功率置信区间估计方法. 电网技术. 2019(05): 1495-1503 .

    Other cited types(8)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-07051015
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 37.6 %FULLTEXT: 37.6 %META: 60.7 %META: 60.7 %PDF: 1.7 %PDF: 1.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.7 %其他: 5.7 %上海: 0.7 %上海: 0.7 %临汾: 0.5 %临汾: 0.5 %北京: 4.5 %北京: 4.5 %十堰: 0.5 %十堰: 0.5 %南京: 0.5 %南京: 0.5 %哥伦布: 0.5 %哥伦布: 0.5 %唐山: 0.5 %唐山: 0.5 %太原: 0.5 %太原: 0.5 %宣城: 1.0 %宣城: 1.0 %山景城: 0.2 %山景城: 0.2 %广州: 0.2 %广州: 0.2 %张家口: 7.9 %张家口: 7.9 %成都: 1.9 %成都: 1.9 %扬州: 0.5 %扬州: 0.5 %朝阳: 0.2 %朝阳: 0.2 %杭州: 2.1 %杭州: 2.1 %池州: 0.5 %池州: 0.5 %淄博: 0.2 %淄博: 0.2 %温州: 0.5 %温州: 0.5 %漯河: 0.7 %漯河: 0.7 %益阳: 0.2 %益阳: 0.2 %石家庄: 0.7 %石家庄: 0.7 %芒廷维尤: 7.4 %芒廷维尤: 7.4 %芜湖: 0.2 %芜湖: 0.2 %芜湖市: 0.7 %芜湖市: 0.7 %芝加哥: 0.2 %芝加哥: 0.2 %西宁: 54.8 %西宁: 54.8 %西安: 0.5 %西安: 0.5 %贵阳: 1.2 %贵阳: 1.2 %运城: 1.2 %运城: 1.2 %邢台: 0.2 %邢台: 0.2 %郑州: 1.2 %郑州: 1.2 %长沙: 1.4 %长沙: 1.4 %雷德蒙德: 0.2 %雷德蒙德: 0.2 %其他上海临汾北京十堰南京哥伦布唐山太原宣城山景城广州张家口成都扬州朝阳杭州池州淄博温州漯河益阳石家庄芒廷维尤芜湖芜湖市芝加哥西宁西安贵阳运城邢台郑州长沙雷德蒙德

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article views(630) PDF downloads(11) Cited by(21)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return