• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
LEI Ming, ZHANG Bingqiang, LIU Hai, HUANG Zhibin. Theoretical Method for Calculating Rail Deformation of Ballastless Railway Caused by Tunnel Undercrossing Based on Dual Beam Model[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 646-652, 669. doi: 10.3969/j.issn.0258-2724.20230033
Citation: YAN Zhitao, LI Jie, ZHANG Pu, YOU Yi, GONG Bo. Numerical Simulation of Direct-Current Sand Leakage Wind Tunnel Based on FLUENT[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 994-1000, 1027. doi: 10.3969/j.issn.0258-2724.20180167

Numerical Simulation of Direct-Current Sand Leakage Wind Tunnel Based on FLUENT

doi: 10.3969/j.issn.0258-2724.20180167
  • Received Date: 10 Mar 2018
  • Rev Recd Date: 22 Aug 2018
  • Available Online: 14 Jan 2019
  • Publish Date: 01 Oct 2020
  • Currently wind-sand tunnels are mainly used for research, protection and management of wind-sand landscape and wind-sand environment, and rarely adopted in structural wind engineering because the stable sections with adjustable wind speeds and wind-sand concentrations at a certain height are difficult to achieve. In order to study the distribution of wind-sand two-phase flow field in the direct-current sand leakage wind tunnel, in this work a wind tunnel model was built using the commercial software FLUENT, and then verified by simulating the existing sand leakage wind tunnel test. Based on the influence of wind speed, sand leakage volume fraction, sand leakage speed, and other parameters on wind-sand flow in the wind tunnel, a new type of sand leakage device for horizontal multi-port wind tunnel was further proposed. Simulation results of the wind-sand tunnel show that the distribution height of sand particles in the same location is higher at a larger wind speed. The quality of the sand particles entering the wind tunnel in unit time is mainly affected by volume fraction and velocity of the sand particles, and is directly proportional to the peak value of the sand particle concentration in the test location. Besides, a test section of about 1/2 wind tunnel height with uniform sand concentration has been realized in the wind-sand tunnel. The required test wind speed field and corresponding sand concentration can be achieved by adjusting the sand leakage volume fraction, sand leakage speed, and test position to complete the wind-sand quantitative tests for wind engineering well.

     

  • 在城市地铁和城际铁路修建中,经常会遇到新建隧道近距离下穿既有铁路的情况[1-2]. 新建隧道开挖施工不可避免会引起铁路路基沉降[3-4],诱发轨道产生几何变形,加剧轮轨动力相互作用,进而影响轨道结构服役性能和列车乘坐舒适性,严重时将造成列车脱轨和铁路停运[5-6]. 因此,研究隧道下穿施工诱发上覆既有铁路轨面变形具有重要的工程意义.

    目前,国内外学者采用理论方法分析新建隧道施工对邻近既有结构的影响时,通常采用两阶段分析方法:第1阶段,忽略既有结构的影响,计算新建隧道施工引起邻近结构所处位置土体的附加应力或自由变形;第2阶段,将既有结构视为连续地基上梁模型,并将土体附加应力或自由变形视为外部作用,应用数值方法[7-8]或简化方法等[9-10]分析邻近既有结构的变形和内力的变化. 两阶段分析方法由于使用简单,被广泛用于分析隧道施工对邻近管线[11-16]、上方铁路[17]、和邻近建筑物[9,18]的影响.

    同时,针对路基沉降引起铁路线路轨道变形开展了一定的研究:邹春华等[19]、付龙龙等[20]分别采用室内试验和数值方法对余弦型路基沉降与有砟轨道变形之间的互相关系进行了研究,并且,邹春华等[21]基于弹性点支承梁模型提出了有砟铁路路基沉降引起轨面变形的计算模型;考虑无砟道床为板状多层结构,张乾等[22]采用梁-板模型分别模拟钢轨及无砟道床,建立了无砟轨道-路基-土体的三维空间有限元模型,对地面沉降对无砟轨道系统平顺性的影响进行了分析,并指出支承层和路基表层间沉降差较大易出现离缝问题;郭宇等[23]、Jiang等[24]分别对双块式和整体板式无砟轨道路基沉降引起轨面变形几何特征与路基沉降波长、幅值之间的对应关系进行了研究.

    以上相关理论研究中邻近既有结构均被简化为弹性地基上的单层梁模型,不能模拟地下结构与底部地基局部分离现象,不适用于计算新建隧道下穿施工引起既有无砟铁路的轨面变形. 为此,本文将无砟铁路结构视为双层地基梁模型,采用改进的Winkler弹性地基模型模拟轨道板与地基的互相作用,建立考虑轨道板底部局部脱空影响的路基沉降引起无砟铁路轨道变形的理论计算模型,进而采用解析方法推导了隧道下穿施工引起轨道变形计算式,为预测隧道下穿既有无砟铁路引起轨道变形提供理论支持.

    新建隧道下穿引起既有无砟铁路轨道变形的计算模型如图1所示,以隧道与铁路相交处为坐标原点,铁路线路方向和x轴建立水平坐标系. 图中:β为隧道与铁路的水平交角,Rt为隧道开挖半径,zt为隧道中心到铁路路基顶面的竖向距离, lt为轨道叠合梁底部局部脱空区长度,s(x)为隧道斜交下穿引起路基沉降,(0,xi)为铁路上任意点坐标.

    图  1  隧道下穿既有铁路力学分析示意
    Figure  1.  Mechanical analysis of existing railway caused by tunnel undercrossing

    本文拟采用两阶段分析方法进行求解,并作如下基本假定:

    1) 钢轨视为两端自由的上层Euler梁,其竖向变形、弹性模量和截面惯性矩分别为wrErIr

    2) 轨道板和其下部支承层简化为下层弹性叠合梁,其竖向变形、弹性模量和截面惯性矩分别为wbEbIb

    3) 采用改进Winkler地基模拟叠合梁下的路基作用,地基的弹性系数为kb

    4) 采用线性弹簧模拟扣件系统,钢轨扣件系统单位长度的等效弹性系数为kr

    5) 隧道施工引起周围土体沉降曲线符合高斯分布.

    根据Euler梁挠曲理论,叠合梁变形诱发钢轨(上层梁)变形的控制方程为

    ErIrd4wr(x)dx4=kr[wr(x)wb(x)].
    (1)

    新建隧道施工前,叠合梁在轨道系统及自重作用下产生均匀沉降. 新建隧道下穿施工引起路基沉降,改变轨道板叠合梁与地基土间的互相作用,导致叠合梁产生变形. 若叠合梁变形大于路基顶面土体沉降,则叠合梁与地基土体间保持接触,两者之间仍然存在互相作用;否则,叠合梁与地基土体将发生分离(即局部脱空),两者互相作用力为0. 轨道板叠合梁(下层梁)变形的控制方程为

    EbIbd4wb(x)dx4={kr[wr(x)wb(x)]+γh,|x|lt/2,kr[wr(x)wb(x)]+γhkb[wb(x)s(x)],|x|>lt/2,
    (2)

    式中:γh分别为叠合梁重度和高度;s(x)计算式[7,13-14]如式(3).

    s(x)=πR2tVt2πisexp[0.5(xsinβis)2],
    (3)

    式中:Vt为隧道施工引起的平均地层损失比,与施工条件相关;is为路基顶面沉降槽宽度半径,采用建议公式is=κzt进行计算,κ为地层沉降槽宽度参数,与土体条件相关.

    将式(1)变形可得

    wb(x)=ErIrkrd4wr(x)dx4+wr(x).
    (4)

    对式(4)求4次导数,可得

    d4wb(x)dx4=ErIrkrd8wr(x)dx8+d4wr(x)dx4.
    (5)

    将式(4)、(5)依次代入式(2)中各分段方程,整理后可得关于钢轨变形的控制方程.

    1) 当|x|lt/2

    脱空区上方钢轨的变形控制方程为

    d8wr(x)dx8+Cd4wr(x)dx4=krγhErIrEbIb,
    (6)

    式中:C=krEbIb+krErIr.

    求解式(6),可得钢轨中间脱空段的变形表达式为

    wr(x)=eβ1x(c1cosβ1x+c2sinβ1x)+eβ1x(c3cosβ1x+c4sinβ1x)+c5+c6x+c7x2+c8x3+γh24(ErIr+EbIb)x4,
    (7)

    式中:β1=4kr4EbIb+kr4ErIrc1c8为待定参数,可用边界条件求出.

    将式(7)代入式(4),可求得中间脱空区上方的轨道板叠合梁变形表达式为

    wb(x)=D1[eβ1x(c1cosβ1x+c2sinβ1x)+eβ1x(c3cosβ1x+c4sinβ1x)]+c5+c6x+c7x2+c8x3+γh24(ErIr+EbIb)x4+γhErIrkr(ErIr+EbIb),
    (8)

    式中:D1=14β41ErIrkr.

    2) 当|x|>lt/2

    脱空区外侧钢轨变形控制方程为

    d8wr(x)dx8+Ed4wr(x)dx4+Fwr(x)=Fs(x)+krγhErIrEbIb,
    (9)

    式中:E=kr(ErIr+EbIb)ErIrEbIb+kbEbIbF=krkbErIrEbIb.

    求解式(9),并结合边界条件wr|x=0,可得脱空区外侧钢轨变形表达式为

    wr(x)=ˉwr(x)+γhkb+eβ2x(c9cosβ2x+c10sinβ2x)+eβ3x(c11cosβ3x+c12sinβ3x),
    (10)

    式中:c9c12为待定系数,可由边界条件确定. ˉwr(x)为路基沉降部分对应的方程特解,可采用展开级数法进行求解,β2β3取值如式(11).

    {β2=4EE24F8,β3=4E+E24F8,E24F>0,β2=24F2FE2,β3=24F+2FE2,E24F<0.
    (11)

    s(x)采用三角函数进行展开,记为

    s(x)=a0+n=1(ancosnπxls),
    (12)

    式中:a0=1ls+ls/20s(x)dxan=2ls+ls/20s(x)cosnπxlsdxls为线路计算长度,n为三角级数项的编号.

    路基沉降对应的轨道变形特解为

    ˉwr(x)=a0+n=1Fcos(nπxls)(nπls)8+E(nπls)4+F.
    (13)

    同理,将式(10)代入式(4),可求得脱空区外侧轨道板叠合梁变形表达式为

    wb(x)=ˉwr(x)+ErIrkrd4ˉwr(x)dx4+γhkb+D2eβ2x(c9cosβ2x+c10sinβ2x)+D3eβ3x(c11cosβ3x+c12sinβ3x),
    (14)

    式中:D2=14ErIrkrβ42D3=14ErIrkrβ43.

    根据Euler梁变形理论,可求得钢轨和轨道板叠合梁的转角θj、弯矩Mj和剪力Qjj=r,b分别表示钢轨和叠合梁):

    {θj=dwjdx,Mj=EjIjd2wjdx2,Qj=EjIjd3wjdx3.
    (15)

    1) 由于模型对称性,当x=0时,钢轨和叠合梁的转角与剪力都为0,即

    {dwjdx|x=0=0,d3wjdx3|x=0=0.
    (16)

    2) 当x=lt/2时,钢轨和叠合梁的位移、转角、弯矩与剪力都保持连续,即

    {wj|x=lt/2=wj|x+=lt/2,dwjdx|x=lt/2=dwjdx|x+=lt/2,d2wjdx2|x=lt/2=d2wjdx2|x+=lt/2,d3wjdx3|x=lt/2=d3wjdx3|x+=lt/2.
    (17)

    根据上述推导的钢轨和轨道板叠合梁变形计算式,利用边界条件(式(16)、(17))可建立起一个关于待定系数的12 × 12阶线性方程组,编制MATLAB程序可求出待定系数. 回代入式(7)、(10)即为隧道下穿施工诱发无砟铁路钢轨变形. 由于脱空区长度lt未知,需要采用多次迭代法进行计算.

    郭宇等[23]基于通用有限元软件ABAQUS,对余弦型路基沉降引起双块式无砟轨道的几何变形规律进行了模拟分析. 模型中采用空间梁单元模拟钢轨,采用弹簧-阻尼器模拟扣件系统,道床板、支承层和路基结构均采用实体单元模拟,结构材料参数见表1. 在轨枕与混凝土道床板、道床板与支承层、支承层与路基表面均进行接触设置,并充分考虑轨道结构和路基之间可能出现离缝甚至空吊现象.

    表  1  无砟轨道材料参数
    Table  1.  Parameters of ballastless rail material
    结构弹性模量/Pa泊松比说明
    钢轨2.10 × 10110.30T60 轨
    道床板3.25 × 10100.17C40 混凝土
    支承层2.55 × 10100.17C20 混凝土
    路基1800.25密度 300 kg/m3
    下载: 导出CSV 
    | 显示表格

    为验证本文理论方法的正确性,采用本文理论方法对文献[23]中不同路基沉降幅值和波长条件下的轨面变形进行分析,模型中钢轨抗弯刚度为6.624 MN·m2,叠合梁抗弯刚度为1.225 GN·m2,扣件刚度为30 MN·m−1,路基弹性系数为200 MN·m−1. 本文计算结果与文献[23]的分析数据对比如图2所示,图2(a)中路基沉降波长取20 m,幅值分别取5 mm和20 mm;图2(b)中路基沉降幅值10 mm,波长分别取10 m和40 m.

    图  2  本文结果与文献[23]数据的对比
    Figure  2.  Comparisons between results of this study and data from literature [23]

    图2中可看出:当轨道结构未产生脱空(5 mm/20 m、10 mm/40 m)时,理论解析计算结果与数值模拟结果几乎一致;当轨道结构产生脱空(20 mm/20 m、10 mm/10 m)时,考虑轨道结构脱空的理论解析计算结果与数值模拟结果基本一致,小于未考虑轨道结构脱空的理论计算结果;当路基沉降为10 mm/10 m时,未考虑轨道结构脱空的理论方法求解出的钢轨变形最大值(7.9 mm)约为考虑轨道结构脱空的理论计算结果(2.3 mm)的3.4倍. 分析表明,当路基不均匀沉降引起无砟轨道结构产生离缝或空吊时,采用本文提出的理论方法仍能较为准确计算出轨面各点处变形值.

    为控制新建隧道下穿既有铁路引起轨道变形,实际工程中通常采用减小隧道施工引起周围地层损失率或选择不同穿越角度和隧道埋深等措施. 为此,本节将针对上述3个参数对隧道下穿施工诱发轨面变形的影响进行分析. 算例中:开挖半径Rt=3.1 m,地层损失率Vt=0.5%,隧道埋深zt=6 m,地层沉降槽宽度参数κ=0.5,隧道与铁路线路垂直相交;无砟铁路结构参数取值与验证算例相同.

    为分析隧道埋深对下穿施工引起钢轨变形的影响,采用本文理论方法分别计算不同隧道埋深(zt=2,4,6,10,20,40 m)条件下轨道的变形,其中轨道中点变形值及轨道板叠合梁脱空区宽度随隧道埋深的变化曲线如图3所示.

    图  3  隧道埋深的影响
    Figure  3.  Influence of buried depth of new tunnel

    图3中可看出,随着隧道埋深的逐步增大,轨道中点变形值及叠合梁底部脱空区宽度均先增大而后减小,当隧道埋深为6 m时达到峰值. 这是由于随着隧道埋深的增加,隧道施工引起路基顶部的沉降槽宽度将逐渐增大,但沉降槽最大沉降值却逐渐减小. 当新建隧道埋深较小时,隧道施工引起路基顶部的沉降槽的宽度较小,轨道叠合梁底部脱空区宽度和最大变形值较小;随着隧道埋深的增大,路基顶部沉降槽的宽度将增大,导致叠合梁底部脱空区宽度和钢轨中心点变形逐渐增大;当隧道埋深增大到一定值时,路基顶部的沉降逐渐平缓,导致叠合梁脱空区宽度逐渐减小,直至随路基协同变形. 由此可见,选择适当的隧道埋深穿越既有铁路可以有效控制隧道下穿施工引起上方轨道变形.

    当隧道施工中地层损失率Vt分别取0.25%、0.50%、1.00%、1.50%、2.00%和2.50%时,隧道下穿施工诱发钢轨中点变形值及叠合梁底部脱空区宽度变化如图4所示. 由图可知:随着隧道施工过程中周围地层损失率的逐渐增大,钢轨中点变形值及叠合梁底部脱空区宽度均逐渐增大;当隧道施工中地层损失率从0.25%增大到2.50%时,钢轨中点变形值和叠合梁脱空区宽度分别从9.7 mm、4 m增大到48.6 mm和13 m,依次增长了约4.00倍、2.25倍. 由此可见,当减小隧道施工中地层损失率是控制隧道下穿施工引起钢轨变形的有效措施之一.

    图  4  隧道施工引起地层损失率的影响
    Figure  4.  Influence of ground loss rate caused by tunnel undercrossing construction

    当新建隧道与铁路间的水平夹角β分别取15°、30°、45°、60°、75° 和90° 时,新建隧道下穿施工诱发轨道中点变形值及叠合梁底部脱空区宽度变化如图5所示. 由图可知:随着隧道与铁路线路间水平夹角的逐渐增大,钢轨中点变形值逐渐减小,而叠合梁底部脱空区宽度逐渐先增大、后基本保持不变. 这是由于当新建隧道与既有铁路线路间的水平夹角较小时,隧道施工引起上方铁路路基顶部沉降较为平缓,轨道叠合梁与路基之间保持跟随变形;随着隧道与铁路线路间水平夹角的增大,路基顶部沉降槽宽度逐渐变窄,轨道叠合梁与路基间产生变形差,轨道叠合梁底部将产生局部脱空,轨道中点变形将减小. 由此可见,选择较大角度穿越既有铁路有利于控制隧道下穿施工引起轨道的变形.

    图  5  地铁线路与隧道水平夹角的影响
    Figure  5.  Influence of intersection angle between between railway and tunnel

    1) 将无砟铁路轨道结构简化为双层地基梁,采用无拉力弹性地基模拟轨道板叠合梁与路基的互相作用,并根据叠合梁与路基间的变形差判别两者的接触状态,建立隧道下穿施工引起无砟铁路轨道变形的控制方程.

    2) 将双层梁分为中间脱空段和两端接地段共三部分,采用解析方法分别推导出上、下层梁(钢轨和轨道板叠合梁)变形的通解和特解表达式,并结合边界条件和分段处连续条件求出变形表达式中的待定系数.

    3) 随着隧道埋深的增大,轨道最大变形值及叠合梁底部脱空区宽度均呈先增大而后减小趋势. 随着隧道施工中周围地层损失率的增大,钢轨最大变形值及叠合梁底部脱空区宽度均逐渐增大. 随着隧道与铁路线路间水平夹角的增大,钢轨最大变形值逐渐减小,而叠合梁底部脱空区宽度逐渐增大、后保持不变.

  • 黄诗晴. 辽西北地区土地荒漠化的成因及治理对策分析[J]. 农业科技与信息,2016(35): 39-40.
    张永民,赵士洞. 全球荒漠化现状及防治对策[J]. 西部大开发,2016(5): 17-19.
    BAGNOLD R A. The physics of blown sand and desert dunes[M]. London: Methuen, 1941: 27-45.
    OWEN P R. Saltation of uniform grains in air[J]. Journal of Fluid Mechanics, 1964, 20(2): 225-242. doi: 10.1017/S0022112064001173
    ANDERSON R S, HAFF P K. Wind modification and bed response during saltation of sand in air[J]. Acta Mechanica, 1991, 1(Sup1): 21-51.
    ARUNDEL P A, HOBSON C A, LALOR M J, et al. Measurement of individual alumina particle velocities and the relative slip of different-sized particles in a vertical gas-solid suspension flow using a laser anemometer system[J]. Journal of Physics D, 1974, 6(6): 2288-2300. doi: 10.1126/science.241.4867.820
    SHAO Y, LI A. Numerical modelling of saltation in the atmospheric surface layer[J]. Boundary-Layer Meteorology, 1999, 91(2): 199-225. doi: 10.1023/A:1001816013475
    PYE K. Wind as a geological process[J]. Physics of the Earth and Planetary Interiors, 1987, 43(1): 90-91.
    DING J, GIDASPOW D. A bubbling fluidization model using kinetic theory of granular flow[J]. AIChE Journal, 1990, 36(4): 523-538. doi: 10.1002/aic.690360404
    王萍,郑晓静. 野外近地表风沙流脉动特征分析[J]. 中国沙漠,2013,33(6): 1622-1628. doi: 10.7522/j.issn.1000-694X.2013.00241
    张伟民,王涛,汪万福,等. 复杂风况条件下戈壁输沙量变化规律的研究[J]. 中国沙漠,2011,31(3): 543-549.
    李朝妹,袁树杰,张振彬. 风沙绕流建筑物流场的数值模拟研究[J]. 建筑热能通风空调,2012,31(2): 66-68. doi: 10.3969/j.issn.1003-0344.2012.02.018
    刘博. 风沙绕流群体建筑物的数值模拟研究[D]. 阿拉农: 塔里木大学, 2015.
    李正农,王尚雨,宫博,等. 风沙对低矮建筑整体受力影响的风洞试验研究[J]. 土木工程学报,2017(1): 63-69.

    LI Zhengnong, WANG Shangyu, GONG Bo, et al. Wind tunnel test for impact of wind-sand flow on overall forces of low-rise building[J]. China Civil Engineering Journal, 2017(1): 63-69.
    岳高伟,毕伟,贾慧娜. 风沙运动的理论模拟和风洞实验对比研究[J]. 干旱区地理,2014,37(1): 81-88.

    YUE Gaowei, BI Wei, JIA Huina. Theoretical simulation and wind tunnel experiment in wind-blown sand movement[J]. Arid Land Geography, 2014, 37(1): 81-88.
    李正农, 范晓飞, 蒲鸥, 等. 建筑物风沙流场与荷载的风洞试验研究[J]. 工程力学, 2020, 37(1): 152-158, 182

    LI Zhenglong, FAN Xiaofei, PU Ou. et al. Wind tunnel test on wind-sand flow field and wind-sand load on buildings[J]. Engineering Mechanics, 2020. 37(1): 152-158, 182
    王康龙. 风沙流的双流体模型参数及输沙量分布特征研究[D]. 兰州: 兰州大学, 2014.
    MARSHALL J K. Drag measurements in roughness arrays of varying density and distribution[J]. Agricultural Meteorology, 1971, 8(71): 269-292.
    GREELEY R, IVERSEN J. Book-review:wind as a geological process on earth,mars,venus and titan[J]. Earth Moon and Planets, 1986, 42: 311-313.
  • Relative Articles

    [1]CHEN Quansheng, HOU Shengjun, JIANG Chuanbin, JIANG Chenchen, YE Lingzhi, YANG Wanli. Experimental Study on Hydro-Abrasion Performance of Polyvinyl Alcohol Fiber Cementitious Composites[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 150-158. doi: 10.3969/j.issn.0258-2724.20210592
    [2]WANG Yonghong, SANG Songkui, LIU Xueying, ZHANG Mingyi, BAI Xiaoyu. Numerical Simulation of Particle Flow Characteristics of Jacked Pile Penetration in Laminated Clay Soil[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1250-1259. doi: 10.3969/j.issn.0258-2724.20200072
    [3]WU Lianhuo, ZHANG Mingjin, LI Yongle, WEI Kei. Numerical Simulation of Wind Characteristics at Bridge Sites in Complex Mountainous Terrains[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 915-922. doi: 10.3969/j.issn.0258-2724.20180029
    [4]WANG Le, SU Junwei, ZHENG Xipeng, YANG Shunsheng. Numerical Simulation of Gas-Liquid Two-Phase Flow at Various Inlet Positions in Bubble Column at Low Gas Velocity[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 164-172. doi: 10.3969/j.issn.0258-2724.2018.01.020
    [5]ZHONG Yongli, YAN Zhitao, WANG Lingzhi, YOU Yi. Large Eddy Simulation of Unsteady Downburst Outflow Based on Wall Jet Model[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1179-1186. doi: 10.3969/j.issn.0258-2724.2018.06.013
    [6]XIAO Yongjie, CHEN Fuquan, DONG Yizhi. Model Test and Numerical Simulation of Penetration Process of Sleeve for Cast-in-Place Piles Driven by Vibratory Hammers[J]. Journal of Southwest Jiaotong University, 2017, 30(4): 705-714. doi: 10.3969/j.issn.0258-2724.2017.04.008
    [7]YU Jianhan, LI Mingshui, LIAO Haili. Numerical Simulation of Effect of Mountainous Topography on Wind Field at Bridge Site[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 654-662. doi: 10.3969/j.issn.0258-2724.2016.04.008
    [8]YANG Yang, WANG Yi, LI Yanbin. Flow Field Characteristics of Exhaust Flow Assisted with a Jet[J]. Journal of Southwest Jiaotong University, 2015, 28(2): 347-353. doi: 10.3969/j.issn.0258-2724.2015.02.022
    [9]HE Chuan, DUAN Zhiqiang. Numerical Simulation of Two-Dimensional Laminar Flow around Circular Cylinder with Splitter Plate[J]. Journal of Southwest Jiaotong University, 2012, 25(5): 826-831. doi: 10.3969/j.issn.0258-2724.2012.05.015
    [10]CHEN Xiao'an, SHANG Fujun, SONG Shuncheng. Numerical Simulation of Temperature Distribution of Induction Plasma Torch in Preparation of Superfine Powder[J]. Journal of Southwest Jiaotong University, 2011, 24(2): 271-276. doi: 10.3969/j.issn.0258-2724.2011.02.016
    [11]CHENG Zhi-Jiang, BARRIERE T, LIU Bao-Sheng, GELIN J C. Experiment and Numerical Simulation of Micro-injection Moulding[J]. Journal of Southwest Jiaotong University, 2010, 23(4): 635-638. doi: 10. 3969/ j. issn. 0258-2724.
    [12]YANG Qinghua, YAO Lingkan, YANG Ming. Particle Flow Numerical Simulation of Landslip of Loose Slope under Seismic Loading[J]. Journal of Southwest Jiaotong University, 2009, 22(4): 580-584.
    [13]WANG Heshun, CHEN Cichang, WANG Jinnuo. Numerical Simulation of Face Flow Field for Dry Gas Seal[J]. Journal of Southwest Jiaotong University, 2007, 20(5): 568-573.
    [14]HUANG Lin, LIAOHai-li. Analysis ofFlow Characteristics around H igh-Speed Railway Bridge-Vehicle System under CrossW ind[J]. Journal of Southwest Jiaotong University, 2005, 18(5): 585-590.
    [15]LUOJian-jun, GAO Bo, WANG Ying-xue, ZHAO Wen-cheng. Numerical Simulation of Unsteady Three-Dimensional Flow Induced by High-Speed Train Entering Tunnel with Shaft[J]. Journal of Southwest Jiaotong University, 2004, 17(4): 442-446.
    [16]TONG Bing, ZHU Bing, ZHOU Ben-kuan. Numerical Simulation of Velocity Field of Flow Around Square Cylinder[J]. Journal of Southwest Jiaotong University, 2002, 15(2): 121-124.
  • Cited by

    Periodical cited type(1)

    1. 徐翠强,战红红,尹盛文,周伟,李景涛,白宇. 喷射式风沙风洞及列车格栅防风沙试验研究. 五邑大学学报(自然科学版). 2023(01): 60-64 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.7 %FULLTEXT: 23.7 %META: 66.8 %META: 66.8 %PDF: 9.5 %PDF: 9.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.0 %其他: 7.0 %上海: 1.2 %上海: 1.2 %临汾: 0.5 %临汾: 0.5 %北京: 6.1 %北京: 6.1 %十堰: 0.2 %十堰: 0.2 %南京: 0.2 %南京: 0.2 %台州: 0.2 %台州: 0.2 %呼和浩特: 0.2 %呼和浩特: 0.2 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 1.4 %哥伦布: 1.4 %大连: 0.9 %大连: 0.9 %天津: 0.2 %天津: 0.2 %宣城: 0.2 %宣城: 0.2 %张家口: 1.4 %张家口: 1.4 %成都: 1.4 %成都: 1.4 %扬州: 0.7 %扬州: 0.7 %杭州: 1.2 %杭州: 1.2 %格兰特县: 0.2 %格兰特县: 0.2 %池州: 0.5 %池州: 0.5 %温州: 0.2 %温州: 0.2 %湖州: 0.5 %湖州: 0.5 %漯河: 1.2 %漯河: 1.2 %绍兴: 0.2 %绍兴: 0.2 %芒廷维尤: 26.5 %芒廷维尤: 26.5 %芝加哥: 0.7 %芝加哥: 0.7 %西宁: 40.6 %西宁: 40.6 %贵阳: 0.2 %贵阳: 0.2 %运城: 1.2 %运城: 1.2 %郑州: 0.7 %郑州: 0.7 %重庆: 1.9 %重庆: 1.9 %长沙: 1.4 %长沙: 1.4 %青岛: 0.2 %青岛: 0.2 %香港特别行政区: 0.2 %香港特别行政区: 0.2 %其他上海临汾北京十堰南京台州呼和浩特哈尔滨哥伦布大连天津宣城张家口成都扬州杭州格兰特县池州温州湖州漯河绍兴芒廷维尤芝加哥西宁贵阳运城郑州重庆长沙青岛香港特别行政区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article views(966) PDF downloads(12) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return