• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 31 Issue 3
Jun.  2018
Turn off MathJax
Article Contents
ZHANG Hongbin, HUANG Shan, YIN Yue. Adaptive Imaging Control System Based on Traffic Video Analysis[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 646-653. doi: 10.3969/j.issn.0258-2724.2018.03.028
Citation: ZHANG Hongbin, HUANG Shan, YIN Yue. Adaptive Imaging Control System Based on Traffic Video Analysis[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 646-653. doi: 10.3969/j.issn.0258-2724.2018.03.028

Adaptive Imaging Control System Based on Traffic Video Analysis

doi: 10.3969/j.issn.0258-2724.2018.03.028
  • Received Date: 21 Dec 2017
  • Publish Date: 01 Jun 2018
  • To ensure accurate video detection and data collection under high dynamic illumination and complicated road conditions, an adaptive traffic imaging control system was developed. A high-definition traffic imaging system was designed to meet the needs of full-time wide-field comprehensive detection. The control characteristics of the imaging parameters were acquired through system identification. Based on license-plate properties and traffic scenes, a video-analysis algorithm computing mid-values of license-plate images and road-marking blocks as feedback control variables, was proposed. In an adaptive control framework combining low-level image-quality feedback and high-level visual-detection results, autonomous illumination-mode adaption and control-state switching were realized. The experimental and application results show that the system control process is fast and stable. It can adapt to different illumination conditions, balance the requirements of high-definition license-plate recognition and wide-field traffic surveillance, maintain good all-day imaging effects, and achieve 97.0% traffic-flow accuracy and a 96.3% license-plate recognition rate.

     

  • loading
  • JIM B, GUSTAVE C, DOMINIE G, et al. ITS strategic plan 2015-2019[R]. Washington D. C.: U.S. Department of Transportation, 2014.
    YU C C, CHENG H Y, JIAN Y F. Raindrop-tampered scene detection and traffic flow estimation for nighttime traffic surveillance[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(3):1518-1527. doi: 10.1109/TITS.2014.2365033
    ZANG Di, CHAI Zhenliang, ZHANG Junqi, et al. Vehicle license plate recognition using visual attention model and deep learning[J]. Journal of Electronic Imaging, 2015, 24(3):1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dc5bf6d67000dfdacf1cb32d25e322ce
    REN Jianqiang, CHEN Yangzhou, XIN Le, et al. Detecting and positioning of traffic incidents via video-based analysis of traffic states in a road segment[J]. IET Intelligent Transport Systems, 2016, 10(6):428-437. doi: 10.1049/iet-its.2015.0022
    KLUBSUWAN K, KOODTALANG W, MUNGSING S. Traffic violation detection using multiple trajectories evaluation of vehicles[C]//Proceedings of International Conference on Intelligent Systems, Modelling and Simulation. [S. l.]: IEEE Computer Society, 2013: 220-224.
    ACUNZO D, ZHU Y, XIE B, et al. Context-adaptive approach for vehicle detection under varying lighting conditions[C]//Intelligent Transportation Systems Conference, 2007, IEEE. [S. l.]: IEEE, 2007: 654-660.
    O'MALLEY R, JONES E, GLAVIN M. Rear-lamp vehicle detection and tracking in low-exposure color video for night conditions[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(2):453-462. doi: 10.1109/TITS.2010.2045375
    LI T, SONG Y, MEI T. An auto exposure control algorithm based on lane recognition for on-board camera[C]//Proceedings of IEEE Intelligent Vehicles Symposium. [S. l.]: IEEE, 2015: 851-856.
    黄山.车牌识别技术的研究和实现[D].成都: 四川大学, 2005.
    吴洪森, 李志能. "电子警察"视频检测系统的分析与设计[J].浙江大学学报:工学版, 2005, 39(10):1517-1519. http://d.old.wanfangdata.com.cn/Periodical/zjdxxb-gx200510012

    WU hongsen, LI Zhineng. Analysis and design of auto-monitoring and recording system for electronic police[J]. Journal of Zhejiang University:Engineering Science, 2005, 39(10):1517-1519. http://d.old.wanfangdata.com.cn/Periodical/zjdxxb-gx200510012
    潘薇.嵌入式车牌识别系统关键技术研究[D].成都: 四川大学, 2010.
    RAGHAVAN A, LIU J, SAHA B, et al. Reference image-independent fault detection in transportation camera systems for nighttime scenes[C]//Proceedings of IEEE Conference on Intelligent Transportation Systems. [S. l.]: IEEE, 2012: 963-968.
    TORRES J, MENÉDE J M. Optimal camera exposure for video surveillance systems by predictive control of shutter speed, aperture, and gain[C]//Real-Time Image and Video Processing. [S. l.]: SPIE, 2015: 1-14.
    黄凯奇, 陈晓棠, 康运锋, 等.智能视频监控技术综述[J].计算机学报, 2015, 38(6):1093-1118. http://d.old.wanfangdata.com.cn/Periodical/jsjxb201506001
    公安部道路交通管理标准化技术委员会. GA/T 496-2014闯红灯自动记录系统通用技术条件[S].北京: 中华人民共和国公安部, 2014.
    OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems Man & Cybernetics, 1979, 9(1):62-66. http://jamia.oxfordjournals.org/lookup/external-ref?access_num=10.1109/TSMC.1979.4310076&link_type=DOI
    张洪斌, 黄山.面向城市路口的高清晰智能监控系统研究[J].四川大学学报:工程科学版, 2012, 44(增刊1):224-228. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201201519114

    ZHANG Hongbin, HUANG Shan. Research on the high definition intelligent surveillance system for urban intersection[J]. Journal of Sichuan University:Engineering Science Edition, 2012, 44(Sup.1):224-228. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201201519114
    MAMMERI A, BOUKERCHE A, TANG Z. A real-time lane marking localization, tracking and communication system[J]. Computer Communications, 2015, 73(2):229-233. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1cda0e292c1f21d1e874d4255a45d480
    MATAS J, KITTLER J, GALAMBOS C. Robust detection of lines using the progressive probabilistic Hough transform[J]. Computer Vision and Image Understanding, 2000, 78(1):119-137. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=21e5c3051d3df8c83b84714e97113bb6
    公安部道路交通管理标准化技术委员会. GA/T 833-2016机动车号牌图像自动识别技术规范[S].北京: 中华人民共和国公安部, 2016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article views(402) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return