• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 54 Issue 5
Oct.  2019
Turn off MathJax
Article Contents
LI Yinqi, CHENG Wenming, LIU Huasen. Layout Optimization of Spatial Rigid Frame by Second-Order Effect Analysis[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 971-979. doi: 10.3969/j.issn.0258-2724.20170863
Citation: LI Yinqi, CHENG Wenming, LIU Huasen. Layout Optimization of Spatial Rigid Frame by Second-Order Effect Analysis[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 971-979. doi: 10.3969/j.issn.0258-2724.20170863

Layout Optimization of Spatial Rigid Frame by Second-Order Effect Analysis

doi: 10.3969/j.issn.0258-2724.20170863
  • Received Date: 07 Dec 2017
  • Rev Recd Date: 06 Sep 2018
  • Available Online: 14 Sep 2018
  • Publish Date: 01 Oct 2019
  • In order to handle three-dimensional spatial frame layout optimization, nonlinear rigidity matrix of the beam-column element with seven degrees of freedom was deduced by second-order elastic theory, while the geometric nonlinearity and restrained torsional warping were considered. An overall second-order analysis for rigid-frame structure was conducted by integrating the nonlinear rigidity matrices of all beam-column elements. A numerical layout optimization model of spatial rigid frame was built, which was able to satisfy the requirements for structural strength, stiffness and stability. In order to solve the numerical model, a two-way control method of reliable topology and guided genetic algorithm (KLGA) was proposed based on the improvement of the genetic algorithm (GA). In one respect, this method enables the separation of the topological variables from the layout design variables, and then integrates them after evaluating the reliable topological variable combinations based on component importance. In addition, the guidance information of structure was added in the algorithm to guide the path of global optimal solution for GA. Finally, two typical examples of rigid frame structure are presented to validate the feasibility and effectiveness of the second-order effect model and optimization method KLGA. For example, in the second-order effect model of example 2, the optimal structural mass acquired by KLGA is 24.5% less than that of GA, and its range of fluctuation promotes from 9.61% to 1.39%, indicating the stability of KLGA.

     

  • loading
  • 王毅,姚卫星. 桁架结构布局优化的并行子空间方法[J]. 工程设计学报,2015,22(3): 256-261. doi: 10.3785/j.issn.1006-754X.2015.03.009

    WANG Yi, YAO Weixing. Concurrent subspace optimization for layout design of trusses[J]. Chinese Journal of Engineering Design, 2015, 22(3): 256-261. doi: 10.3785/j.issn.1006-754X.2015.03.009
    SHI Lianshuan, WANG Yuefang, SUN Huanchun. Approach for layout optimization of truss structures with discrete variables under dynamic stress,displacement and stability constraints[J]. Applied Mathematics and Mechanics, 2006, 27(5): 593-599. doi: 10.1007/s10483-006-0504-y
    GHOLIZADEH S. Layout optimization of truss structures by hybridizing cellular automata and particle swarm optimization[J]. Computers and Structures, 2013, 125: 86-99. doi: 10.1016/j.compstruc.2013.04.024
    HOOSHMAND A, CAMPBELL M I. Truss layout design and optimization using a generative synthesis approach[J]. Computers and Structures, 2016, 163: 1-28. doi: 10.1016/j.compstruc.2015.09.010
    AHRARI A, DEB K. An improved fully stressed design evolution strategy for layout optimization of truss structures[J]. Computers and Structures, 2016, 164: 127-144. doi: 10.1016/j.compstruc.2015.11.009
    AHRARI A, ATAI A. Fully stressed design evolution strategy for shape and size optimization of truss structures[J]. Computers and Structures, 2013, 123: 58-67. doi: 10.1016/j.compstruc.2013.04.013
    GAO Ge, LIU Zhenyu, LI Yaobin, et al. A new method to generate the ground structure in truss topology optimization[J]. Engineering Optimization, 2017, 49(2): 235-251. doi: 10.1080/0305215X.2016.1169050
    STOLPE M. Truss topology optimization with discrete design variables by outer approximation[J]. Global Optimization, 2015, 61: 139-163. doi: 10.1007/s10898-014-0142-x
    肖阿阳. 基于演化算法的杆系结构拓扑与布局优化设计研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
    童根树. 钢结构的平面外稳定性[M]. 修订版. 北京: 中国建筑工业出版社, 2012: 107-108.
    中华人民共和国住房与城乡建设部. 钢结构设计规范: GB 50017—2003[S]. 北京: 中国计划出版社, 2003.
    AISC Committee. Specification for structural steel buildings: ANSI/AISC360—05[S]. Chicago: AISC B. D, 2005.
    CEN. Eurocode 3: Design of Steel Structures: BS EN 1993-1-1[S]. Brussels: BSI, 2003.
    ALWIS W A M, WANG C M. Wangner term in flexural-torsional buckling of thin-walled open-profile columns[J]. Engineering Structures, 1996, 18(2): 125-132. doi: 10.1016/0141-0296(95)00112-3
    刘坚. 钢结构高等分析的二阶非弹性理论与应用[M]. 北京: 科学出版社, 2011: 147–158.
    朱朝艳,刘斌,张延年,等. 复合形遗传算法在离散变量桁架结构拓扑优化中的应用[J]. 四川大学学报(工程科学版),2004,36(5): 6-10. doi: 10.3969/j.issn.1009-3087.2004.05.002

    ZHU Chaoyan, LIU Bin, ZHANG Yannian, et al. Application of complex genetic algorithm to discrete topology optimization of truss structure[J]. Journal of Sichuan University (Engineering Science Edition), 2004, 36(5): 6-10. doi: 10.3969/j.issn.1009-3087.2004.05.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article views(449) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return