• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 27 Issue 4
Jul.  2014
Turn off MathJax
Article Contents
SHAO Junhu, XIANG Tianyu, ZHAO Renda. Transfer Matrix Method of Beam-Column Transient Analysis Considering Second-Order Effect[J]. Journal of Southwest Jiaotong University, 2014, 27(4): 631-636. doi: 10.3969/j.issn.0258-2724.2014.04.011
Citation: SHAO Junhu, XIANG Tianyu, ZHAO Renda. Transfer Matrix Method of Beam-Column Transient Analysis Considering Second-Order Effect[J]. Journal of Southwest Jiaotong University, 2014, 27(4): 631-636. doi: 10.3969/j.issn.0258-2724.2014.04.011

Transfer Matrix Method of Beam-Column Transient Analysis Considering Second-Order Effect

doi: 10.3969/j.issn.0258-2724.2014.04.011
  • Received Date: 19 May 2013
  • Publish Date: 25 Aug 2014
  • Second-order effect of a compression-bending member under a high axial force will influence the stiffness and dynamic characteristics of a structure, so a transfer matrix method was proposed to calculate the transient response of beam-column with considering the second-order effect. With this method, the dynamic partial differential equations for Euler-Bernoulli beam are discretized in time domain with the Newmark-β method and transformed into an ordinary differential equation; the differential equation is solved with the variation of constants method to obtain the analytical solution of displacement increment in continuous space domain. Based on the principle of the transfer matrix method, an incremental transfer matrix for discrete-time transient analysis is derived, and a corresponding algorithm was proposed for the transient analysis considering the second-order effect. The numerical results indicate that under the same calculation accuracy, computational efficiency of the proposed method is 3.57 times that of finite element software ANSYS, and the dynamic responses of a structure subjected to a moving load can be obtained easily.

     

  • loading
  • 刘庆潭,倪国荣. 结构分析中的传递矩阵法[M]. 北京:中国铁道出版社,1997: 1-2.
    刘庆潭,赵淳,杨朝晖,等. 基于传递矩阵法分析考虑自重的变截面高墩稳定性[J]. 南华大学学报:自然科学版,2009,23(4): 92-101. LIU Qingtan, ZHAO Chun, YANG Zhaohui, et al. Analysis of transfer matrix method by considering the self-stability of variable cross-section high-pier[J]. Journal of University of South China: Science and Technology, 2009, 23(4): 92-101.
    刘庆潭,单立平. 复杂变截面压杆屈曲载荷计算的传递矩阵法[J]. 农业机械学报,2002,33(3): 106-109. LIU Qingtan, SHAN Liping. The transfer matrix method for calculation of buckling load of a compressed bar with complex variable sections[J]. Transactions of the Chinese Society for Agricultural Machinery, 2002, 33(3): 106-109.
    刘庆潭,倪国荣. 压杆稳定性和横向自由振动计算的传递矩阵法[J]. 长沙铁道学院学报,1994,12(4): 87-95. LIU Qingtan, NI Guorong. The method of transfer matrix of stability and transfer free vibration for compressed bar[J]. Journal of Changsha Railway University, 1994, 12(4): 87-95.
    刘庆潭,倪国荣. 具有弹性支座及弹性地基的梁弯曲自由振动的传递矩阵法求解[J]. 长沙铁道学院学报,1994,12(1): 95-103. LIU Qingtan, NI Guorong. The solution of transfer matrix of bending free vibration for beam with elastic supports and elastic foundation[J]. Journal of Changsha Railway University, 1994, 12(1): 95-103.
    李雅萍,刘庆潭. 多跨弹性支座圆弧梁计算的传递矩阵法[J]. 中国铁道科学,2005,26(3): 48-52. LI Yaping, LIU Qingtan. The transfer matrix method for calculating circular beam with several elastic supports[J]. China Railway Science, 2005, 26(3): 48-52.
    向天宇,郑建军,周欣竹. 变截面圆拱强迫振动的传递矩阵算法[J]. 土木工程学报,2000,33(1): 46-50. XIANG Tianyu, ZHENG Jiangjun, ZHOU Xinzhu. Transfer matrix algorithm for force vibration of circular arches with variable cross-section[J]. China Civil Engineering Journal, 2000, 33(1): 46-50.
    XIANG Tianyu, ZHAO Renda. Dynamic interaction analysis of vehicle-bridge system using transfer matrix method[J]. Structural Engineering and Mechanics, 2005, 20(1): 1-11.
    XIANG Tianyu, ZHAO Renda, XU Tengfei. Reliability evaluation of vehicle bridge dynamic interaction[J]. Journal of Structural Engineering, 2007, 133(8): 1092-1099.
    何斌,陈树辉. 连续梁瞬态振动离散时间精细传递矩阵法[J]. 振动与冲击,2008,27(4): 4-8. HE Bin, CHEN Shuhui. Discrete-time precise transfer matrix method for transient vibration analysis of a continuous beam[J]. Journal of Vibration and Shock, 2008, 27(4): 4-8.
    孙建鹏,李青宁. 大跨桥梁地震反应的频域精细传递矩阵法[J]. 工程力学,2010,27(12): 8-13. SUN Jianpeng, LI Qingning. Precise transfer matrix method for seismic response analysis of the long-span bridges in frenquency domain[J]. Engineering Mechanics, 2010, 27(12): 8-13.
    薛惠钰. 计算变剖面梁稳态强迫振动的精确传递矩阵法[J]. 苏州大学学报:自然科学版,2001,17(3): 39-47. XUE Huiyu. Exact transfer matrix method for computing stable forced vibration of changeable cross-section beams[J]. Journal of Suzhou University: Natural Science, 2001, 17(3): 39-47.
    王佳,张宏生,陆念力. 计及二阶效应的梁杆系统动力响应分析方法研究[J]. 工程力学,2012,29(7): 275-282. WANG Jia, ZHANG Hongsheng, LU Nianli. The study of dynamic response analysis of beam-rod system considering second-order effects[J]. Engineering Mechanics, 2012, 29(7): 275-282.
    CLOUGH R W, PENZIEN J. Dynamics of structures[M]. New York: Computers & Structures, Inc., 2003: 121-123.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(899) PDF downloads(521) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return