• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
WANG Wenxi, LI Jianyong, FAN Wengang, HE Zhe. Abrasion Process Modeling of Abrasive Belt Grinding in Rail Maintenance[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 141-147. doi: 10.3969/j.issn.0258-2724.2017.01.020
Citation: WANG Wenxi, LI Jianyong, FAN Wengang, HE Zhe. Abrasion Process Modeling of Abrasive Belt Grinding in Rail Maintenance[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 141-147. doi: 10.3969/j.issn.0258-2724.2017.01.020

Abrasion Process Modeling of Abrasive Belt Grinding in Rail Maintenance

doi: 10.3969/j.issn.0258-2724.2017.01.020
  • Received Date: 07 Jun 2016
  • Publish Date: 25 Feb 2017
  • Considering the contact area state under elastic contact of curved surfaces, an abrasive belt wear process model for rail grinding was established using the Archard equation and Heltzian contact theory to investigate the influence of technological parameters on the belt service life. The curves of wear height and belt service life were calculated through numerical simulations under different grinding forces, belt speeds, running car speeds, rail surface curvature radius and average variances of grit protrusion height. The rationality of the model was proved by comparing the simulational curves with existing experimental results. Simulation analysis illustrates that the wear contour of abrasive belt surface typically presents as a half ellipsoid, and the belt service life reduces exponentially with an increase in both the contact pressure and belt speed, but rise approximate linearly with the growth of running car speed. Taking the 60 kg/m rail as an example, under the same process conditions, the belt wear for grinding the R13 segment is clearly worse than that for both R80 and R300 segments. In the range of allowable rail surface roughness, a large grit protrusion height variance would be helpful to prolonging the abrasive belt service life.

     

  • 金学松,杜星,郭俊,等. 钢轨打磨技术研究进展[J]. 西南交通大学学报,2010,45(1):1-11. JIN Xuesong, DU Xing, GUO Jun, et al. State of arts of reaserch on rail grinding[J]. Journal of Southwest Jiaotong University, 2010, 45(1):1-11.
    王文健,陈明韬,郭俊, 等. 高速铁路钢轨打磨技术及其应用[J]. 西南交通大学学报,2007,42(5):574-577. WANG Wenjian, CHEN Mingtao, GUO Jun, et al. Rail ginding technique and its application in high-speed railway[J]. Journal of Southwest Jiaotong University, 2007, 42(5):574-577.
    聂蒙,李建勇,沈海阔,等. 基于容腔调节的钢轨打磨压力控制系统[J]. 西南交通大学学报,2015,50(5):796-802. NIE Meng, LI Jianyong, SHEN Haikuo, et al. Pressure control system for rail grinding based on chamber adjustment[J]. Journal of Southwest Jiaotong University, 2015, 50(5):796-802.
    刘月明,李建勇,蔡永林,等. 钢轨打磨技术现状和发展趋势[J]. 中国铁道科学,2014,35(4):29-37. LIU Yueming, LI Jianyong, CAI Yonglin, et al. Current state and development trend of rail grinding technology[J]. China Railway Science, 2014, 35(4):29-37.
    黄云. 核电高压容器强力高效砂带磨削方法及应用研究[D]. 重庆:重庆大学,2009.
    黄云,黄智. 现代砂带磨削技术及工程应用[M]. 重庆:重庆大学出版社,2009:92-106.
    路勇,黄云. 砂带磨削磨损性能试验研究[J]. 机械科学与技术,2014,33(12):1865-1868. LU Yong, HUANG Yun. Experimental investigation in the grinding and wear performance of abrasive belt grindingp[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(12):1865-1868.
    吴昌林,丁和艳,陈义. 材料去除深度与磨粒的关系建模方法研究[J]. 中国机械工程,2011,22(3):300-304. WU Changlin, DING Heyan, CHEN Yi. Research on modeling method of relation between abrasive grain and material removal depth[J]. China Mechanical Engineering, 2011, 22(3):300-304.
    张雷,袁楚明,周祖德, 等. 模具曲面抛光时表面去除的建模与试验研究[J]. 机械工程学报,2002,38(12):98-102. ZHANG Lei, YUAN Chuming, ZHOU Zude, et al. Modeling and experiment of material removal in polishing on mold curved surfaces[J]. Chinese Journal of Mechanical Engineering, 2002, 38(12):98-102.
    WANG Y J, HUANG Y, CHEN Y X, et al. Model of an abrasive belt grinding surface removal contour and its application[J]. International Journal of Advanced Manufacturing Technology, 2016, 82:2113-2122.
    EMEST R. Frication and wear of materials[M]. 2nd ed. New York:A Wiley-Interscience Publication, 1995:191-209.
    WANG W X, LI J Y, LIU Y M, et al. Simulation of abrasive belt topography based on generation of random rough surface[J]. Key Engineering Materials, 2016, 693:892-899.
    MEZGHANI S, El MANSORI M. Abrasiveness properties assessment of coated abrasives for precision belt grinding[J]. Surface and Coatings Technology, 2008, 203(5):786-789.
    JOURANI A, HAGEGE B, BOUVIER S, et al. Influence of abrasive grain geometry on friction coefficient and wear rate in belt finishing[J]. Tribology International, 2013, 59:30-37.
    任守良. 钛合金砂带磨削研究[D]. 南京:南京航空航天大学,2007.
  • Relative Articles

    [1]ZENG Luqing, CUI Dabin, LI Li. Rail Grinding Model Based on Mechanical-Electric-Hydraulic Coupling[J]. Journal of Southwest Jiaotong University, 2025, 60(2): 364-373. doi: 10.3969/j.issn.0258-2724.20220577
    [2]QIN Shiqiang, HUANG Chunlei, GONG Junhu, MAO Ling, WANG Qiuping. Experimental Study on Steel-Concrete Joint of Integrated Track Beam for Medium and Low Speed Maglev[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 867-876. doi: 10.3969/j.issn.0258-2724.20230241
    [3]XU Jingmang, LIANG Xinyuan, WANG Kai, ZHAO Siqi, WANG Ping. Influence of Fastener Stiffness Nonlinearity on Wheel–Rail Transient Rolling Contact Behavior in Corrugated Area[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 247-255. doi: 10.3969/j.issn.0258-2724.20211043
    [4]DONG Bingjie, CHEN Guangxiong, FENG Xiaohang, REN Wenjuan, SONG Qifeng, MEI Guiming. Vibration Fatigue Fracture Mechanism of e-Type Clip Under Rail Corrugation Excitation[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230707
    [5]WANG Ping, SONG Juan, YANG Chunkai, AN Boyang, CHEN Rong. Effect of Measured Wheel-Rail Creep Curves on Rail Wear[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1034-1042. doi: 10.3969/j.issn.0258-2724.20220392
    [6]CONG Jianli, WANG Yuan, XU Zhou, LI Wei, CHEN Rong, WANG Ping. Rail Corrugation Measurement Method Based on Vibration-Noise Fusion in Metro System[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 677-684. doi: 10.3969/j.issn.0258-2724.20220260
    [7]CUI Xiaolu, TANG Chuanping, BAO Pengyu, QI Wei, LI Junda. Rail Corrugation Suppressing Method on Braking Sections of High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 656-664. doi: 10.3969/j.issn.0258-2724.20220256
    [8]WU Lei, KANG Yanbing, DONG Yong, ZHANG Huapeng. Optimal Design of Heavy-Haul Rail Grinding Profile Considering Grinding Amount[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 805-812. doi: 10.3969/j.issn.0258-2724.20210120
    [9]CHEN Yu, AN Boyang, PAN Zili, MO Hongyuan, WANG Ping, FANG Jiasheng, QIAN Yao, XU Jingmang. Analysis of Wheel-Rail Contact and Wear Considering Variable Cross-Sections of Switch Rail[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1250-1258. doi: 10.3969/j.issn.0258-2724.20210040
    [10]WANG Yupu, CHENG Wenming, DU Run, WANG Shubiao, DENG Yong. Bionic Design Method for Crane Box Girder Wind Load Reduction Based on Ostracion-Cubicus[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 664-671. doi: 10.3969/j.issn.0258-2724.20190085
    [11]MA Xiaochuan, WANG Ping, WANG Jian, XU Jingmang. Static Contact Analysis of Worn-Wheel Profiles and 60N Rail of High-Speed Railway[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 741-747. doi: 10.3969/j.issn.0258-2724.2018.04.011
    [12]NIE Meng, LI Jianyong, SHEN Haikuo. Pressure Control System for Rail Grinding Based on Chamber Adjustment[J]. Journal of Southwest Jiaotong University, 2015, 28(5): 796-802. doi: 10.3969/j.issn.0258-2724.2015.05.005
    [13]DING Junjun, LI Fu, HUANG Yunhua. Calculation of Wheel Wear Based on Semi-Hertzian Contact[J]. Journal of Southwest Jiaotong University, 2011, 24(2): 195-200. doi: 10.3969/j.issn.0258-2724.2011.02.003
    [14]JIN Hua-Song, DU Xing, GUO Jun, CUI Da-Bin. State of Arts of Research on Rail Grinding[J]. Journal of Southwest Jiaotong University, 2010, 23(1): 1-11. doi: 10. 3969/.j issn. 0258-2724. 2
    [15]WANG Wenjian, CHEN Mingtao, GUO Jun, LIU Qiyue. Rail Grinding Technique and Its Application in High-Speed Railway[J]. Journal of Southwest Jiaotong University, 2007, 20(5): 574-577.
    [16]ZHANG Li-min. Analysis of Wheel/Rail Contact Stresses and Rail Corrugation[J]. Journal of Southwest Jiaotong University, 2003, 16(1): 34-37.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-0705101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.0 %FULLTEXT: 30.0 %META: 70.0 %META: 70.0 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.9 %其他: 7.9 %东莞: 0.8 %东莞: 0.8 %东营: 0.3 %东营: 0.3 %临汾: 0.5 %临汾: 0.5 %亳州: 0.3 %亳州: 0.3 %兰州: 0.3 %兰州: 0.3 %北京: 1.6 %北京: 1.6 %南通: 0.5 %南通: 0.5 %合肥: 0.3 %合肥: 0.3 %哥伦布: 1.1 %哥伦布: 1.1 %嘉兴: 0.3 %嘉兴: 0.3 %天津: 0.3 %天津: 0.3 %常州: 0.8 %常州: 0.8 %张家口: 3.9 %张家口: 3.9 %成都: 0.5 %成都: 0.5 %扬州: 0.8 %扬州: 0.8 %杭州: 1.1 %杭州: 1.1 %株洲: 0.5 %株洲: 0.5 %武汉: 2.4 %武汉: 2.4 %池州: 1.1 %池州: 1.1 %洛阳: 0.3 %洛阳: 0.3 %深圳: 0.5 %深圳: 0.5 %湖州: 0.3 %湖州: 0.3 %漯河: 1.1 %漯河: 1.1 %石家庄: 2.1 %石家庄: 2.1 %芒廷维尤: 7.6 %芒廷维尤: 7.6 %芝加哥: 2.1 %芝加哥: 2.1 %衡阳: 0.5 %衡阳: 0.5 %西宁: 57.4 %西宁: 57.4 %邯郸: 0.5 %邯郸: 0.5 %长沙: 1.6 %长沙: 1.6 %阳江: 1.1 %阳江: 1.1 %其他东莞东营临汾亳州兰州北京南通合肥哥伦布嘉兴天津常州张家口成都扬州杭州株洲武汉池州洛阳深圳湖州漯河石家庄芒廷维尤芝加哥衡阳西宁邯郸长沙阳江

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(598) PDF downloads(245) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return