• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
GUO Feng, XIE Jianhua, YUE Yuan. Chaos Control of Lauwerier Mapping[J]. Journal of Southwest Jiaotong University, 2014, 27(3): 525-529. doi: 10.3969/j.issn.0258-2724.2014.03.024
Citation: GUO Feng, XIE Jianhua, YUE Yuan. Chaos Control of Lauwerier Mapping[J]. Journal of Southwest Jiaotong University, 2014, 27(3): 525-529. doi: 10.3969/j.issn.0258-2724.2014.03.024

Chaos Control of Lauwerier Mapping

doi: 10.3969/j.issn.0258-2724.2014.03.024
  • Received Date: 22 May 2012
  • Publish Date: 25 Jun 2014
  • In order to overcome the defect that the properties of the original system is changed in the process of chaos control with external excitation or damping, the OGY control method is combined with the pole placement technique of the linear control theory to establish a linear mapping. By applying the pole placement technique to select a small time-dependent perturbation of the control parameter, a new method is proposed to control the chaos movement of Lauwerier mapping. According to the ergodicity of chaos movement, the unstable periodic orbits are embedded into the chaotic attractor. The unstable period-1 and period-2 orbits are selected as the control targets. When map points wander to the neighborhood of these periodic orbits, a small perturbation is added to the system control parameter, and the unstable period-1 and period-2 orbits are controlled to be stable. In addition, the influence of different regulator poles on the control time is analyzed. The results show that when the two poles are 1/8 and 0, respectively, the unstable period-1 orbit is controlled at the fixed point after 230 iterations; and when the two poles are 1/6 and -1/4, the chaos control is achieved after 3 300 iterations. The dynamic properties of the original system is not changed in the process of the chaos control.

     

  • OTT E, GREBOGI C, YORKE J A. Controlling chaos[J]. Phys. Rev. Lett., 1990, 64(11): 1196-1199.
    PYRAGAS K. Continuous control of chaos by self-controlling feedback[J]. Phys. Lett. A, 1992, 170(6): 421-428.
    SHINBROT T, GREBOGI C, OTT E, et al. Using small perturbations to control chaos[J]. Nature, 1993, 363: 411-417.
    PYRAGAS K. Predictable chaos in slightly perturbed unpredictable chaotic systems[J]. Phys. Lett. A, 1993, 181(3): 203-210.
    AUERBACH D, GREBOGI C, OTT E, et al. Controlling chaos in high-dimensional systems[J]. Phys. Rev. Lett., 1992, 69(24): 3479-3482.
    BOCCALETTI S, GREBOGI C, LAI Y C, et al. The control of chaos: theory and applications[J]. Phys. Rep., 2000, 329: 103-197.
    YAGASAKI K, UOZUMI T. A new approach for controlling chaotic dynamical systems[J]. Phys. Lett. A, 1998, 238: 349-357.
    YAGASAKI K, UOZUMI T. Controlling chaos using nonlinear approximations and delay coordinate embedding[J]. Phys. Lett. A, 1998, 247: 129-139.
    YAGASAKI K. Extension of a chaos control method to unstable trajectories on infinite-or finite-time intervals: experimental verification[J]. Phys. Lett. A, 2007, 368: 222-226.
    FLIPE R J, GREBOGI C, OTT E. Controlling chaotic dynamical systems[J]. Phys. D, 1992, 58: 165-192.
    LAUWERIER H A. The structure of a strange attractor[J]. Phys. D, 1986, 21(1): 146-154.
    刘曾荣, 秦文新, 谢惠民. Lauwerier吸引子的结构和动力学行为[J]. 科学通报, 1992, 37(14): 1269-1278. LIU Zengrong, QIN Wenxin, XIE Huimin. The structure and dynamic of Lauwerier attractor[J]. Chinese Science Bulletin, 1992, 37(14): 1269-1278.
    曹永罗. Lauwerier奇怪吸引子的遍历性及其结构[J]. 数学学报, 1999, 42(6): 965-968. CAO Yongluo. The ergodicity and the structure of Lauwerier strange attractor[J]. Journal of Mathematics, 1999, 42(6): 965-968.
    OGATA K. Controlling engineering[M]. 2nd Ed. Englewood Cliffs: Prentice Hall, 1990: 782-784.
  • Relative Articles

    [1]FENG Fu, HU Hailin, ZHONG Deming, YANG Jie. Online Parameter Identification of Linear Induction Motors Based on Improved Interconnected Full-Order Observer[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 776-785. doi: 10.3969/j.issn.0258-2724.20230507
    [2]TU Jianjun, 2, HE Hanlin. Robust Rudder Roll Stabilization of Guaranteed Attractor[J]. Journal of Southwest Jiaotong University, 2012, 25(2): 271-278. doi: 10.3969/j.issn.0258-2724.2012.02.017
    [3]GUO Wei, WANG Xiaomin, LIU Jing, HE Dake. One-Way Hash Function Construction Based on Chaotic Message Expansion[J]. Journal of Southwest Jiaotong University, 2010, 23(5): 751-757. doi: 10. 3969/ j. issn. 0258-2724.
    [4]LI Yinghui, DU Changcheng, GAO Qing. Chaotic Motion of a Viscoelastic Beam in Time Dependent Temperature Field[J]. Journal of Southwest Jiaotong University, 2007, 20(6): 685-690.
    [5]LI Song, HE Guoguang, ZHANG Jie. Relationship between Distance Headway and Chaos in Traffic Flow on Expressway[J]. Journal of Southwest Jiaotong University, 2007, 20(3): 305-309.
    [6]LIU Zhao-hui, LI Li. Control of Chaotic Motion of a Planar 2R Robot[J]. Journal of Southwest Jiaotong University, 2006, 19(1): 11-14.
    [7]JIADong-li, ZHANG Jia-shu, ZHANG Chao. Geometric Prim itive Extraction Using ChaosGenetic Algorithm[J]. Journal of Southwest Jiaotong University, 2005, 18(4): 496-500.
    [8]LIU Qi-lie, ZHANG Cui-fang, YI Fan. Controlling Chaotic Motions of Nonlinear System Using B-Spline Neural Network[J]. Journal of Southwest Jiaotong University, 2005, 18(1): 18-21.
    [9]ZHAOHai-quan, ZHANGJia-shu. Prediction of Chaotic Time Series Using Bilinear Adaptive Filter[J]. Journal of Southwest Jiaotong University, 2004, 17(4): 490-493.
    [10]TANXiao-hui, ZHANGJi-ye, YANG Yi-ren. Synchronization between Two Chaotic Systems Using Lyapunov Method[J]. Journal of Southwest Jiaotong University, 2004, 17(5): 645-647.
    [11]XIEJIAN-hua. ChaotieBehaviorsinFinlteSubshifts[J]. Journal of Southwest Jiaotong University, 2001, 14(4): 378-382.
    [12]XIANG Xiao-dong, GUO Yao-huang. Chaotic Attractor-Based Time Series Forecasting Method and Its Application[J]. Journal of Southwest Jiaotong University, 2001, 14(5): 472-475.
    [13]WangLi, Li Chunmao. Robust Pole Assignment against Structure Perturbation[J]. Journal of Southwest Jiaotong University, 1999, 12(5): 407-412.
    [14]WANG  Chi, Li-Chun-Mao. Robust Pole Assignment against Structure Perturbation[J]. Journal of Southwest Jiaotong University, 1999, 12(5): 407-412.
    [15]Xiao Jian, Guo Chuigui. Robust Pole Assignment in Multirate Input Sampling Digital Control System[J]. Journal of Southwest Jiaotong University, 1999, 12(5): 379-383.
    [16]XIAO  Jian, GUO Chui-Gui. Robust Pole Assignment in Multirate Input Sampling Digital Control System[J]. Journal of Southwest Jiaotong University, 1999, 12(5): 379-383.
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-0702.557.510
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 36.8 %FULLTEXT: 36.8 %META: 63.2 %META: 63.2 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.8 %其他: 3.8 %[]: 0.4 %[]: 0.4 %亳州: 0.8 %亳州: 0.8 %北京: 2.5 %北京: 2.5 %常州: 0.4 %常州: 0.4 %张家口: 4.6 %张家口: 4.6 %成都: 0.4 %成都: 0.4 %桂林: 0.4 %桂林: 0.4 %武汉: 0.4 %武汉: 0.4 %池州: 2.5 %池州: 2.5 %漯河: 0.8 %漯河: 0.8 %石家庄: 0.4 %石家庄: 0.4 %芒廷维尤: 14.2 %芒廷维尤: 14.2 %西宁: 68.2 %西宁: 68.2 %其他[]亳州北京常州张家口成都桂林武汉池州漯河石家庄芒廷维尤西宁

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(786) PDF downloads(427) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return