• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

磁性液体振动能量采集器研究与展望

恭飞 李德才

恭飞, 李德才. 磁性液体振动能量采集器研究与展望[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20250373
引用本文: 恭飞, 李德才. 磁性液体振动能量采集器研究与展望[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20250373
GONG Fei, LI Decai. Research Progress and Prospect of Magnetic Fluid Vibration Energy Harvester[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20250373
Citation: GONG Fei, LI Decai. Research Progress and Prospect of Magnetic Fluid Vibration Energy Harvester[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20250373

磁性液体振动能量采集器研究与展望

doi: 10.3969/j.issn.0258-2724.20250373
基金项目: 中国博士后基金项目(2025M771323);国家重大科研仪器研制项目(51927810)
详细信息
    作者简介:

    恭飞(1990—),男,助理研究员,博士,研究方向为磁性液体减振、传感、微纳能源采集,E-mail:gongfei@mail.tsinghua.edu.cn

    通讯作者:

    李德才(1965—),男,教授,研究方向为磁性液体密封、传感器、减振器等基础零部件,E-mail:lidecai@mail.tsinghua.edu.cn

  • 中图分类号: TM619;

Research Progress and Prospect of Magnetic Fluid Vibration Energy Harvester

  • 摘要:

    磁性液体振动能量采集器在低频振动环境中具有鲜明的技术优势,在机械振动监测、微纳传感器和人体可穿戴设备供电等领域具有广阔的应用前景. 随着能源需求的日益增长和环境问题的日益突出,开发高效、可靠的振动能量采集技术已成为当前研究的热点. 将磁性液体应用到振动能量采集器中,可降低能量采集器的频响阈值,提高能量采集器的能量采集效率. 这种创新性设计不仅能够有效拓宽振动能量采集器的应用范围,还能为微电子设备提供稳定的能量来源,具有重要的理论意义和实际应用价值. 本文通过对国内外磁性液体振动能量采集器研究现状进行综述,详述电磁和摩擦电2种不同形式振动能量采集器的最新研究进展,在此基础上分析磁性液体振动能量采集器设计中磁性液体材料性能及壁面特性对其电学输出性能的影响,壁面材料的表面粗糙度和亲疏水特性也会显著影响摩擦电式能量采集器的输出性能. 因此,如何优化磁性液体材料性能和壁面特性以提高能量采集器的输出性能以及设计高效的能源管理系统以实现能量的稳定输出和有效利用,是未来研究的重要方向. 最后对磁性液体振动能量采集器未来发展的趋势进行展望,以期为相关研究提供参考.

     

  • 图 1  电磁发电机原理

    Figure 1.  Principle of electromagnetic generator

    图 2  磁性液体微型发电机结构示意图及实验装置

    Figure 2.  Structure and experimental setup of magnetic fluid micro-generator

    图 3  磁性液体电磁振动能量采集器

    Figure 3.  Electromagnetic vibration energy harvester for magnetic fluids

    图 4  磁性液体减振-能量采集复合装置

    Figure 4.  Composite device of magnetic fluid vibration damping and energy harvesting

    图 5  低频磁性液体振动能量采集器

    Figure 5.  Low-frequency magnetic fluid vibration energy harvester

    图 6  增强带宽非线性谐振电磁能量采集器

    Figure 6.  Enhanced-bandwidth nonlinear resonant electromagnetic energy harvester

    图 7  磁性液体-液体弹簧能量采集装置

    Figure 7.  Magnetic fluid-liquid spring energy harvesting device

    图 8  磁性液体液-固摩擦纳米发电机原理

    Figure 8.  Principle of triboelectric nanogenerator of magnetic fluid-based liquid-solid

    图 9  电磁-摩擦复合能量采集器

    Figure 9.  Composite electromagnetic-friction energy harvester

    图 10  磁性液体多模态摩擦纳米发电机.(a)磁性液体超柔韧TENG装置;(b)磁场传感器;(c)不同纳米磁性颗粒浓度对TENG 电学输出性能的影响

    Figure 10.  Magnetic fluid-based multi-modal triboelectric nanogenerator

    图 11  场辅助非接触式摩擦纳米发电机.(a)磁性液体-聚四氟乙烯 TENG 装置;(b - c)有润滑剂和无润滑剂情况下环形磁铁不同速度下的 TENG 装置响应;(d)FF-S TENG 装置的工作原理

    Figure 11.  Magnetic field-assisted non-contact triboelectric nanogenerator

    图 12  磁性液体摩擦电自供能触觉传感器.(a)磁性液体摩擦电自供能触觉传感器结构示意图;(b)通过电子云相互作用解释接触起电现象;(c)在铜探针施加的不同静态压力下磁性液体摩擦电自供能触觉传感器的输出电压;(d)磁性液体摩擦电自供能触觉传感器的响应时间;(e)动态可变压力下实时输出电压的变化

    Figure 12.  Magnetic fluid-based triboelectric self-powered tactile sensor

    图 13  磁性液体摩擦-电磁复合振动能量收集器

    Figure 13.  Composite magnetic fluid friction-electromagnetic vibration energy harvester

    图 14  磁性液体SL-TENG.(a)基于磁性液体的摩擦纳米发电机装置;(b)摩擦纳米发电机装置的工作原理;(c-d)在无磁场和有磁场情况下,不同磁性液体体积所设计的 TENG 装置产生的电压和电流

    Figure 14.  Magnetic fluid SL-TENG

    图 15  SL-TENG自传感磁性液体减振器.(a)在一个振荡周期内电荷载流子流动和工作单元运动的示意图;(b)与(a)中 i - iv 对应的电压信号的变化;(c)与(a)中 i - iv 对应的剪切力的变化

    Figure 15.  Self-sensing magnetic fluid damper based on SL-TENG

    图 16  磁性液体的组成及其磁场响应特性

    Figure 16.  Composition and magnetic field response characteristics of magnetic fluids

    表  1  磁性颗粒种类及优缺点

    Table  1.   Types of magnetic particles and their advantages and disadvantages

    种类 磁性颗粒 优点 缺点
    铁氧体磁性液体 Fe3O4
    γ- Fe2O3
    制备工艺
    简单,经济
    饱和磁化强度相对较低
    金属磁性液体 Fe, Co, Ni, Fe-Ni,
    Fe-Co-Ni
    高饱和磁
    化强度
    易氧化
    氧化铁磁性液体 ε-Fe3N, γ-Fe4N, Fe8N 高饱和磁化强度,高矫顽力,稳定性好 制备工艺及设备复杂,生产受限
    下载: 导出CSV

    表  2  磁性液体基载液种类

    Table  2.   Types of magnetic fluid-based carrier fluids

    基载液
    种类
    饱和磁化
    强度/Gs
    密度
    × 103/
    (kg•m−3
    粘度/
    (Pa•s)
    [25℃]
    热导率/
    (W•(m•
    K−1))
    初始
    磁化率/
    (m•H−1
    200±20 1.18 1~10 0.59 0.6
    煤油 450±10 1.48 3~25 0.16 0.4
    机油 450±50 1.23 20 0.15 0.8
    450±20 1.27 100 ~ 1000 0.16 0.25
    下载: 导出CSV
  • [1] HARMS J, HOLLM M, DOSTAL L, et al. Design and optimization of a wave energy converter for drifting sensor platforms in realistic ocean waves[J]. Applied Energy, 2022, 321: 119303. doi: 10.1016/j.apenergy.2022.119303
    [2] ZHANG H X, WU X P, PAN Y J, et al. A novel vibration energy harvester based on eccentric semicircular rotor for self-powered applications in wildlife monitoring[J]. Energy Conversion and Management, 2021, 247: 114674. doi: 10.1016/j.enconman.2021.114674
    [3] GHOLIKHANI M, BEHESHTI SHIRAZI S Y, MABROUK G M, et al. Dual electromagnetic energy harvesting technology for sustainable transportation systems[J]. Energy Conversion and Management, 2021, 230: 113804. doi: 10.1016/j.enconman.2020.113804
    [4] KHALID S, RAOUF I, KHAN A, et al. A review of human-powered energy harvesting for smart electronics: recent progress and challenges[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2019, 6(4): 821-851. doi: 10.1007/s40684-019-00144-y
    [5] SUE C Y, TSAI N C. Human powered MEMS-based energy harvest devices[J]. Applied Energy, 2012, 93: 390-403. doi: 10.1016/j.apenergy.2011.12.037
    [6] STARNER T. Human-powered wearable computing[J]. IBM Systems Journal, 1996, 35(3.4): 618-629. doi: 10.1147/sj.353.0618
    [7] 陈婷婷, 王凯, 成利, 等. 准零刚度驱动式压电低频振动能量采集方法[J]. 力学学报, 2023, 55(10): 2156-2167. doi: 10.6052/0459-1879-23-315

    CHEN Tingting, WANG Kai, CHENG Li, et al. Research on quasi-zero-stiffness-enabled piezoelectric low-frequency vibration energy harvesting method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2156-2167. doi: 10.6052/0459-1879-23-315
    [8] ZI Y L, WANG Z L. Nanogenerators: An emerging technology towards nanoenergy[J]. Apl Materials, 2017, 5(7): 074103. doi: 10.1063/1.4977208
    [9] JANG S, KIM H, KIM Y, et al. Honeycomb-like nanofiber based triboelectric nanogenerator using self-assembled electrospun poly(vinylidene fluoride-co-trifluoroethylene) nanofibers[J]. Applied Physics Letters, 2016, 108(14): 143901. doi: 10.1063/1.4945329
    [10] HUANG L B, XU W, BAI G X, et al. Wind energy and blue energy harvesting based on magnetic-assisted noncontact triboelectric nanogenerator[J]. Nano Energy, 2016, 30: 36-42. doi: 10.1016/j.nanoen.2016.09.032
    [11] JEONG C K, BAEK C, KINGON A I, et al. Lead-free perovskite nanowire-employed piezopolymer for highly efficient flexible nanocomposite energy harvester[J]. Small, 2018, 14(19): 1704022. doi: 10.1002/smll.201704022
    [12] HALIM M A, PARK J Y. Modeling and experiment of a handy motion driven, frequency up-converting electromagnetic energy harvester using transverse impact by spherical ball[J]. Sensors and Actuators A: Physical, 2015, 229: 50-58. doi: 10.1016/j.sna.2015.03.024
    [13] WU W Z. High-performance piezoelectric nanogenerators for self-powered nanosystems: quantitative standards and figures of merit[J]. Nanotechnology, 2016, 27(11): 112503. doi: 10.1088/0957-4484/27/11/112503
    [14] WU S, LUK P C K, LI C F, et al. Investigation of an electromagnetic wearable resonance kinetic energy harvester with ferrofluid[J]. IEEE Transactions on Magnetics, 2017, 53(9): 4600706.
    [15] ZHANG C D, LI D C, ZHAO W X, et al. Research on preparation and stability of high viscosity carbon nanotube-modified PAO20-based magnetic fluids[J]. Applied Materials Today, 2024, 41: 102425. doi: 10.1016/j.apmt.2024.102425
    [16] 陈诺, 李德才. 磁性液体密封自愈合特性的影响因素实验研究[J]. 机械工程学报, 2025, 61(13): 213-221. doi: 10.3901/JME.2025.13.213

    CHEN Nuo, LI Decai. Experimental study on factors influencing self-restoring characteristic of magnetic fluid seal[J]. Journal of Mechanical Engineering, 2025, 61(13): 213-221. doi: 10.3901/JME.2025.13.213
    [17] 张彤, 李德才, 李艳文. 磁性液体密封与迷宫密封组合密封的结构设计及优化[J]. 机械工程学报, 2022, 58(9): 172-181. doi: 10.3901/JME.2022.09.172

    ZHANG Tong, LI Decai, LI Yanwen. Design and optimization of combined magnetic fluid seal and labyrinth seal[J]. Journal of Mechanical Engineering, 2022, 58(9): 172-181. doi: 10.3901/JME.2022.09.172
    [18] RINALDI C, CHAVES A, ELBORAI S, et al. Magnetic fluid rheology and flows[J]. Current Opinion in Colloid & Interface Science, 2005, 10(3/4): 141-157.
    [19] CHEN N, LI D C, XUE J Y, et al. Magnetic fluid sealing status estimation based on acoustic emission monitoring[J]. Frontiers in Materials, 2022, 9: 957446. doi: 10.3389/fmats.2022.957446
    [20] LI Y W, LI D C. The dynamics analysis of a magnetic fluid shock absorber with different inner surface materials[J]. Journal of Magnetism and Magnetic Materials, 2022, 542: 168473. doi: 10.1016/j.jmmm.2021.168473
    [21] BANERJEE U, SHYAM S, MITRA S K. Magnetic control of water droplet impact onto ferrofluid lubricated surfaces[J]. Langmuir, 2023, 39(11): 4049-4059. doi: 10.1021/acs.langmuir.2c03404
    [22] ALBERTO N, DOMINGUES M F, MARQUES C, et al. Optical fiber magnetic field sensors based on magnetic fluid: a review[J]. Sensors, 2018, 18(12): 4325. doi: 10.3390/s18124325
    [23] WANG S Q, LI D C. Electromagnetic human motion generator with magnetic spring and ferrofluid[J]. Electronics Letters, 2015, 51(21): 1693-1695. doi: 10.1049/el.2015.2696
    [24] 姚杰, 李辉, 李德才, 等. 一种航天用磁性液体吸振器的减振性能研究[J]. 振动与冲击, 2023, 42(21): 298-305. doi: 10.13465/j.cnki.jvs.2023.21.036

    YAO Jie, LI Hui, LI Decai, et al. Damping performance of a magnetic liquid vibration absorber for spacecrafts[J]. Journal of Vibration and Shock, 2023, 42(21): 298-305. doi: 10.13465/j.cnki.jvs.2023.21.036
    [25] ZHAO J Q, ZHEN G W, LIU G X, et al. Remarkable merits of triboelectric nanogenerator than electromagnetic generator for harvesting small-amplitude mechanical energy[J]. Nano Energy, 2019, 61: 111-118. doi: 10.1016/j.nanoen.2019.04.047
    [26] DE QUEIROZ A C M. Electrostatic generators for vibrational energy harvesting[C]//2013 IEEE 4th Latin American Symposium on Circuits and Systems (LASCAS). Peru: IEEE, 2013: 1-4.
    [27] NGUYEN HUU T, VAN T N, TAKAHITO O. Flexible thermoelectric power generator with Y-type structure using electrochemical deposition process[J]. Applied Energy, 2018, 210: 467-476. doi: 10.1016/j.apenergy.2017.05.005
    [28] BIBO A, MASANA R, KING A, et al. Electromagnetic ferrofluid-based energy harvester[J]. Physics Letters A, 2012, 376(32): 2163-2166. doi: 10.1016/j.physleta.2012.05.033
    [29] ALAZEMI S F, DAQAQ M F. Ferrofluids for concurrent vibration absorption and energy harvesting[C]//Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting. Snowbird: American Society of Mechanical Engineers, 2013: V002T07A029.
    [30] CHAE S H, JU S, CHOI Y, et al. Electromagnetic vibration energy harvester using springless proof mass and ferrofluid as a lubricant[J]. Journal of Physics: Conference Series, 2013, 476: 012013. doi: 10.1088/1742-6596/476/1/012013
    [31] MONROE J G, VASQUEZ E S, ASPIN Z S, et al. Energy harvesting via ferrofluidic induction[C]//Energy Harvesting and Storage: Materials, Devices, and Applications VI. Baltimore: SPIE, 2015: 94930G.
    [32] WANG Y F, ZHANG Q, ZHAO L R, et al. Ferrofluid liquid spring for vibration energy harvesting[C]//2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS). Portugal: IEEE, 2015: 122-125.
    [33] ALAZEMI S F, BIBO A, DAQAQ M F. A ferrofluid-based energy harvester: an experimental investigation involving internally-resonant sloshing modes[J]. The European Physical Journal Special Topics, 2015, 224(14): 2993-3004.
    [34] CHOI Y, JU S N, CHAE S H, et al. Low-frequency vibration energy harvester using a spherical permanent magnet with controlled mass distribution[J]. Smart Materials and Structures, 2015, 24(6): 065029. doi: 10.1088/0964-1726/24/6/065029
    [35] LI C F, WU S, LUK P C K, et al. Enhanced bandwidth nonlinear resonance electromagnetic human motion energy harvester using magnetic springs and ferrofluid[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(2): 710-717. doi: 10.1109/TMECH.2019.2898405
    [36] YU J, LI D C, LI S B, et al. Electromagnetic vibration energy harvester using magnetic fluid as lubricant and liquid spring[J]. Energy Conversion and Management, 2023, 286: 117030. doi: 10.1016/j.enconman.2023.117030
    [37] FAN F R, TIAN Z Q, WANG Z L. Flexible triboelectric generator[J]. Nano Energy, 2012, 1(2): 328-334. doi: 10.1016/j.nanoen.2012.01.004
    [38] WANG Z L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors[J]. ACS Nano, 2013, 7(11): 9533-9557. doi: 10.1021/nn404614z
    [39] GAO Q, CHENG T H, WANG Z L. Triboelectric mechanical sensors: progress and prospects[J]. Extreme Mechanics Letters, 2021, 42: 101100. doi: 10.1016/j.eml.2020.101100
    [40] SEOL M L, HAN J W, MOON D I, et al. All-printed triboelectric nanogenerator[J]. Nano Energy, 2018, 44: 82-88. doi: 10.1016/j.nanoen.2017.11.067
    [41] ZHAO Z H, DAI Y J, LIU D, et al. Rationally patterned electrode of direct-current triboelectric nanogenerators for ultrahigh effective surface charge density[J]. Nature Communications, 2020, 11: 6186. doi: 10.1038/s41467-020-20045-y
    [42] WANG Z Z, SHI Y X, LIU F, et al. Distributed mobile ultraviolet light sources driven by ambient mechanical stimuli[J]. Nano Energy, 2020, 74: 104910. doi: 10.1016/j.nanoen.2020.104910
    [43] XU W H, ZHENG H X, LIU Y, et al. A droplet-based electricity generator with high instantaneous power density[J]. Nature, 2020, 578(7795): 392-396. doi: 10.1038/s41586-020-1985-6
    [44] TANG Q W, ZHANG H N, HE B L, et al. An all-weather solar cell that can harvest energy from sunlight and rain[J]. Nano Energy, 2016, 30: 818-824. doi: 10.1016/j.nanoen.2016.09.014
    [45] LIU Z, LI H, SHI B J, et al. Wearable and implantable triboelectric nanogenerators[J]. Advanced Functional Materials, 2019, 29(20): 1808820. doi: 10.1002/adfm.201808820
    [46] WANG W C, WU Y H, CHANG Z H, et al. Self-powered intelligent water meter for electrostatic scale preventing, rust protection, and flow sensor in a solar heater system[J]. ACS Applied Materials & Interfaces, 2019, 11(6): 6396-6403.
    [47] CHEN J, GUO H Y, ZHENG J G, et al. Self-powered triboelectric micro liquid/gas flow sensor for microfluidics[J]. ACS Nano, 2016, 10(8): 8104-8112. doi: 10.1021/acsnano.6b04440
    [48] 禹健, 郭艳婕, 杨雷. 固-液摩擦纳米发电机[J]. 机械工程学报, 2021, 57(21): 160-181. doi: 10.3901/JME.2021.21.160

    YU Jian, GUO Yanjie, YANG Lei. Solid-Liquid Triboelectric Nanogenerator[J]. Journal of Mechanical Engineering, 2021, 57(21): 160-181. doi: 10.3901/JME.2021.21.160
    [49] 亓有超, 赵俊青, 张弛. 微纳振动能量收集器研究现状与展望[J]. 机械工程学报, 2020, 56(13): 1-15. doi: 10.3901/JME.2020.13.001

    QI Youchao, ZHAO Junqing, ZHANG Chi. Review and prospect of micro-nano vibration energy harvesters[J]. Journal of Mechanical Engineering, 2020, 56(13): 1-15. doi: 10.3901/JME.2020.13.001
    [50] KULANDAIVEL A, POTU S, BABU A, et al. Advances in ferrofluid-based triboelectric nanogenerators: design, performance, and prospects for energy harvesting applications[J]. Nano Energy, 2024, 120: 109110. doi: 10.1016/j.nanoen.2023.109110
    [51] 杨晓锐, 郑昊, 龙辉, 等. 磁性液体摩擦-电磁复合能量收集器的力电耦合机制研究[J]. 中国电机工程学报, 2024, 44(11): 4406-4417. doi: 10.13334/j.0258-8013.pcsee.230262

    YANG Xiaorui, ZHENG Hao, LONG Hui, et al. Study on mechanical-electrical coupling mechanism of magnetic liquid triboelectric-electromagnetic composite energy harvester[J]. Proceedings of the CSEE, 2024, 44(11): 4406-4417. doi: 10.13334/j.0258-8013.pcsee.230262
    [52] ANU K, HEMALATHA J. Magnetically tuned thermoelectric behavior of Zn-doped magnetite nanofluids[J]. Nanotechnology, 2021, 32(2): 025707. doi: 10.1088/1361-6528/abb72a
    [53] ANU K, HEMALATHA J. Ultrasonic and magnetic investigations of the molecular interactions in zinc doped magnetite Nanofluids[J]. Journal of Molecular Liquids, 2018, 256: 213-223. doi: 10.1016/j.molliq.2018.02.037
    [54] KIM D, YUN K S. Energy harvester using contact-electrification of magnetic fluid droplets under oscillating magnetic field[J]. Journal of Physics: Conference Series, 2015, 660(1): 012108.
    [55] SEOL M L, JEON S B, HAN J W, et al. Ferrofluid-based triboelectric-electromagnetic hybrid generator for sensitive and sustainable vibration energy harvesting[J]. Nano Energy, 2017, 31: 233-238. doi: 10.1016/j.nanoen.2016.11.038
    [56] AHMED A, HASSAN I, MOSA I M, et al. An ultra-shapeable, smart sensing platform based on a multimodal ferrofluid-infused surface[J]. Advanced Materials, 2019, 31(11): 1807201. doi: 10.1002/adma.201807201
    [57] WANG P, ZHANG S, ZHANG L, et al. Non-contact and liquid–liquid interfacing triboelectric nanogenerator for self-powered water/liquid level sensing[J]. Nano Energy, 2020, 72: 104703. doi: 10.1016/j.nanoen.2020.104703
    [58] LIU J Y, WEN Z, LEI H, et al. A liquid–solid interface-based triboelectric tactile sensor with ultrahigh sensitivity of 21.48kPa−1[J]. Nano-Micro Letters, 2022, 14(1): 88. doi: 10.1007/s40820-022-00831-7
    [59] YANG X R, ZHENG H, SHAO J L, et al. Output characteristics of an electromagnetic–triboelectric hybrid energy harvester based on magnetic liquid[J]. ACS Applied Electronic Materials, 2023, 5(2): 775-783. doi: 10.1021/acsaelm.2c01262
    [60] CHEN Y R, ZHANG H, XU C H, et al. Characteristic of solid-ferrofluid triboelectric nanogenerator for ultra-low-frequency vibration energy harvesting[J]. Nano Energy, 2023, 111: 108395. doi: 10.1016/j.nanoen.2023.108395
    [61] LI Y W, WANG K Q, YANG H W, et al. Solid-liquid triboelectric nanogenerator based self-sensing vibration suppression device[J]. Nano Energy, 2024, 131: 110211. doi: 10.1016/j.nanoen.2024.110211
    [62] 李德才. 磁性液体理论及应用[M]. 北京: 科学出版社, 2003.
    [63] YU L Q, ZHENG L J, YANG J X. Study of preparation and properties on magnetization and stability for ferromagnetic fluids[J]. Materials Chemistry and Physics, 2000, 66(1): 6-9. doi: 10.1016/S0254-0584(00)00236-4
    [64] HAO R C, LIU H G, WANG S. Preparation and parameters measurement of magnetic fluid[J]. Journal of Physics: Conference Series, 2020, 1637(1): 012016. doi: 10.1088/1742-6596/1637/1/012016
    [65] SHAHRIVAR K, MORILLAS J R, LUENGO Y, et al. Rheological behavior of magnetic colloids in the borderline between ferrofluids and magnetorheological fluids[J]. Journal of Rheology, 2019, 63(4): 547-558. doi: 10.1122/1.5093628
    [66] 李振坤. 磁性液体流变特性及其对密封液体性能影响研究[D]. 北京: 北京交通大学, 2019.
    [67] 李德才, 张少兰, 李剑玲, 等. Fe3O4/Au复合磁性纳米颗粒的制备及其表征[J]. 功能材料, 2011, 42(8): 1429-1432, 1435.

    LI Decai, ZHANG Shaolan, LI Jianling, et al. Preparation and characterization of Fe3O4/Au nano particles[J]. Journal of Functional Materials, 2011, 42(8): 1429-1432,1435.
    [68] ROSENSWEIG R E. Ferrohydrodynamics[M]. Cambridge (UK): Cambridge University Press, 1997.
    [69] 段培松. 硅油基磁性液体的制备与性能研究[D]. 北京: 北京交通大学, 2014.
    [70] LI Q P, LI D C, ZHANG S T, et al. Magnetic field-induced interfacial pattern formation in thin ferrofluid drops[J]. Physics of Fluids, 2024, 36(4): 042111. doi: 10.1063/5.0207888
    [71] CHEN H J, WANG Y M, QU J M, et al. Preparation and characterization of silicon oil based ferrofluid[J]. Applied Surface Science, 2011, 257(24): 10802-10807. doi: 10.1016/j.apsusc.2011.07.103
    [72] SMITH T W, WYCHICK D. Colloidal iron dispersions prepared via the polymer-catalyzed decomposition of iron pentacarbonyl[J]. The Journal of Physical Chemistry, 1980, 84(12): 1621-1629. doi: 10.1021/j100449a037
    [73] KOLE M, KHANDEKAR S. Engineering applications of ferrofluids: a review[J]. Journal of Magnetism and Magnetic Materials, 2021, 537: 168222. doi: 10.1016/j.jmmm.2021.168222
    [74] 李德才. 神奇的磁性液体[M]. 北京: 清华大学出版社, 2025.
    [75] ASHTIANI M, HASHEMABADI S H, GHAFFARI A. A review on the magnetorheological fluid preparation and stabilization[J]. Journal of Magnetism and Magnetic Materials, 2015, 374: 716-730. doi: 10.1016/j.jmmm.2014.09.020
    [76] NIE S L, GONG F, JI H, et al. Effects of micron–nano composite iron particle powders on the tribological properties of magnetic fluids used for a nonlinear energy sink vibration absorber[J]. Physics of Fluids, 2023, 35(9): 092012. doi: 10.1063/5.0168499
    [77] LI G Z, WANG G G, YE D M, et al. High-performance transparent and flexible triboelectric nanogenerators based on PDMS-PTFE composite films[J]. Advanced Electronic Materials, 2019, 5(4): 1800846. doi: 10.1002/aelm.201800846
    [78] CHEN J, GUO H Y, HE X M, et al. Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film[J]. ACS Applied Materials & Interfaces, 2016, 8(1): 736-744.
    [79] SAHU M, ŠAFRANKO S, HAJRA S, et al. Development of triboelectric nanogenerator and mechanical energy harvesting using argon ion-implanted kapton, zinc oxide and kapton[J]. Materials Letters, 2021, 301: 130290. doi: 10.1016/j.matlet.2021.130290
    [80] QUAN Z C, HAN C B, JIANG T, et al. Robust thin films-based triboelectric nanogenerator arrays for harvesting bidirectional wind energy[J]. Advanced Energy Materials, 2016, 6(5): 1501799. doi: 10.1002/aenm.201501799
    [81] ZHANG Z, XU Y Y, WANG D F, et al. Enhanced performance of an expanded polytetrafluoroethylene-based triboelectric nanogenerator for energy harvesting[J]. Nano Energy, 2019, 60: 903-911. doi: 10.1016/j.nanoen.2019.04.034
    [82] ZHENG Q F, FANG L M, GUO H Q, et al. Highly porous polymer aerogel film-based triboelectric nanogenerators[J]. Advanced Functional Materials, 2018, 28(13): 1706365. doi: 10.1002/adfm.201706365
    [83] WU J, WANG X L, HE J Y, et al. Synthesis of fluorinated polyimide towards a transparent triboelectric nanogenerator applied on screen surface[J]. Journal of Materials Chemistry A, 2021, 9(10): 6583-6590. doi: 10.1039/D0TA11156B
    [84] CHAI B, SHI K M, ZOU H Y, et al. Conductive interlayer modulated ferroelectric nanocomposites for high performance triboelectric nanogenerator[J]. Nano Energy, 2022, 91: 106668. doi: 10.1016/j.nanoen.2021.106668
    [85] LUO J J, WANG Z M, XU L, et al. Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics[J]. Nature Communications, 2019, 10: 5147. doi: 10.1038/s41467-019-13166-6
    [86] 杨潍旭, 王晓力, 陈平. 摩擦纳米发电机表面织构的优化设计[J]. 机械工程学报, 2020, 56(3): 130-136. doi: 10.3901/JME.2020.03.130

    YANG Weixu, WANG Xiaoli, CHEN Ping. Optimal design of surface texture in triboelectric nanogenerators[J]. Journal of Mechanical Engineering, 2020, 56(3): 130-136. doi: 10.3901/JME.2020.03.130
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  29
  • HTML全文浏览量:  23
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-21
  • 网络出版日期:  2026-01-12

目录

    /

    返回文章
    返回