Gas Permeability Characteristics and Gas Catastrophe Driving Mechanism of Transversely Isotropic Unsaturated Loess
-
摘要:
气体迁移在非饱和黄土地基普遍存在,相关规律及灾变驱动机制研究对黄土高原城市建设、基础设施服役安全性评价与黄土灾变问题解读等方面具有重要意义. 为此,考虑黄土地基的横观各向同性,采用改进非饱和三轴仪,对不同湿度与应力水平的原状与不同干密度重塑土样进行渗气试验,总结气体在横观各向同性非饱和黄土中迁移特性与气体灾变驱动机制,并提出横观各向同性非饱和黄土渗气系数模型. 结果表明:随着密度、湿度和应力水平的增大,在横观各向同性非饱和黄土中的气体流速和渗气系数均呈现出明显的先下降后稳定趋势,其中,当干密度≤1.51 g/cm3、含水率≤12.5%,竖向应力≤100 kPa时,渗气系数下降变化小于30%,相反加速衰减,三者引起土体内部空气孔隙体积的压缩、孔隙连通性降低及气体流动通道曲折化,致使最终渗气性能降低;横观各向同性非饱和黄土中的气体迁移在密度、湿度和应力水平影响下整体表现为“抑制-加压-驱动”的灾变机制. 研究成果不仅能提高非饱和黄土中渗气计算的准确性,丰富气体泄露防控理论,还可为加压气体致黄土地基灾变防控提供参考.
Abstract:Gas migration is prevalent in unsaturated loess foundations. Research into gas migration laws and catastrophe driving mechanisms holds great significance for urban construction, the evaluation of infrastructure service safety, and the interpretation of the loess catastrophe issue in the Loess Plateau. Therefore, by considering the transverse isotropy of loess foundations, an improved triaxial apparatus for unsaturated loess was used to conduct gas permeability tests on undisturbed soil samples (with different humidity and stress levels) and remolded soil samples (with various dry densities). The gas migration characteristics and gas catastrophe driving mechanism within transversely isotropic unsaturated loess were summarized, and a corresponding gas permeability coefficient model was proposed. The results indicate that with increases in density, moisture content, and stress level, both gas flow rate and gas permeability coefficient in transversely isotropic unsaturated loess exhibit a distinct trend of initial decrease followed by stabilization. Specifically, when the dry density is less than or equal to 1.51 g/cm3; the moisture content is less than or equal to 12.5%, and the vertical stress is less than or equal to 100 kPa, the observed decrease in gas permeability coefficient is less than 30%. Conversely, beyond these thresholds, the decay accelerates. Fundamentally, these factors induce compressed internal air pore volume, reduced pore connectivity, and increased tortuosity of gas flow paths, ultimately diminishing the gas permeability performance. Under the influence of density, moisture content, and stress level, the gas migration within transversely isotropic unsaturated loess collectively demonstrates a “suppression, pressurization, and driving” catastrophe mechanism. The research findings can not only improve the accuracy of gas permeability calculation in unsaturated loess and enrich the theory of gas leakage prevention and control but also offer valuable reference for the prevention and control of loess foundation catastrophe induced by pressurized gas.
-
表 1 土样的基本物理指标
Table 1. Basic physical indices of soil samples
相对密度ds 液限
wL/%塑限
wP/%最大干密度
ρdmax/(g•cm−3)最优含水率
Wopt/%孔隙比
e杨氏
模量/MPa2.73 31.1 17.3 1.91 12.5 0.901 18.56 表 2 试验方案
Table 2. Test schemes
土样
类型干密度
ρd/(g•cm−3)含水率
w/%竖向力
P/kPa重塑土 1.51、1.68、1.78 5.0、9.0、12.5、15.6、18.6 0、100、200 原状土 1.35 表 3 渗气过程的轴向变形差值与压力梯度皮尔逊相关性
Table 3. Pearson correlation between axial deformation difference and pressure gradient in gas permeation process
竖向力
P/kPaρd/(g•cm3) 1.35 1.51 1.68 1.78 0 −0.974 −0.975 −0.978 0.082 100 0.278 0.014 −0.253 −0.964 200 0.280 0.255 −0.230 −0.527 表 4 原状黄土试样修正VG模型拟合参数
Table 4. Fitting parameters of modified VG model for undisturbed loess samples
拟合参数 P=0 P=50 kPa P=100 kPa P=200 kPa a 0.17729 0.12253 1.80529 0.319417 b – 235.70399 2.42148 7.11546 48.50468 c 1.71156 1.67515 1.70002 2.40017 R2 0.99465 0.99458 0.99374 0.99223 表 5 重塑黄土试样修正VG模型拟合参数
Table 5. Fitting parameters of modified VG model for remolded loess samples
P/kPa a b c R2 ρd=
1.51g/cm3ρd=
1.68g/cm3ρd=
1.78g/cm3ρd=
1.51g/cm3ρd=
1.68g/cm3ρd=
1.78g/cm3ρd=
1.51g/cm3ρd=
1.68g/cm3ρd=
1.78g/cm3ρd=
1.51g/cm3ρd=
1.68g/cm3ρd=
1.78g/cm30 0.26384 0.17768 0.17286 4.07213 3.57715 3.53542 1.40076 1.51924 1.47793 0.9864 0.99663 0.97553 50 0.03294 1.37073
E-50.00104 – 2.27604 – 11.72174 – 4.1264 1.41465 1.46782 1.556001 0.9958 0.99369 0.97656 100 3.59e–4 1.27e–5 6.56e–7 – 11.3539 – 12.04581 – 14.72824 1.41428 1.44995 1.39614 0.99528 0.98355 0.96564 200 2.07e–5 1.65e–7 1.25e–7 – 18.1599 3.0185 – 6.32039 1.46017 1.74544 1.55157 0.99743 0.98777 0.99245 -
[1] 祁生文, 侯晓坤, 于永堂, 等. 压实黄土场地湿陷沉降机理与黄土高原平山造城适宜性[J]. 科学通报, 2023, 68(14): 1844-1860. doi: 10.1360/TB-2022-0686QI Shengwen, HOU Xiaokun, YU Yongtang, et al. Collapse and subsidence mechanism of compacted loess and suitability of mountain bulldozing and city creation projects in the Loess Plateau of China[J]. Chinese Science Bulletin, 2023, 68(14): 1844-1860. doi: 10.1360/TB-2022-0686 [2] 于永堂, 郑建国. 黄土高填方场地工后沉降预测新模型[J]. 西南交通大学学报, 2022, 57(6): 1268-1276, 1292.YU Yongtang, ZHENG Jianguo. New prediction model for post-construction settlement of loess high fill site[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1268-1276,1292. [3] 郭楠, 陈正汉, 杨校辉, 等. 横观各向同性非饱和黄土的真三轴试验研究[J]. 岩土工程学报, 2022, 44(增1): 74-79. doi: 10.11779/CJGE2022S1014GUO Nan, CHEN Zhenghan, YANG Xiaohui, et al. A true triaxial test of saturated coarse sand under different loading directions[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 74-79. doi: 10.11779/CJGE2022S1014 [4] 郭楠, 陈正汉, 杨校辉, 等. 各向同性土与横观各向同性土的力学特性和持水特性[J]. 西南交通大学学报, 2019, 54(6): 1235-1243.GUO Nan, CHEN Zhenghan, YANG Xiaohui, et al. Mechanical properties and water holding characteristics of initially isotropic soils and transversely isotropic soils[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1235-1243. [5] TERZAGHI K. Erdbaumechanik auf Bodenphysikalischer Grundlage[M]. Leipzig und Wien: Franz Deuticke, 1925. [6] 陈正汉, 谢定义, 王永胜. 非饱和土的水气运动规律及其工程性质研究[J]. 岩土工程学报, 1993, 15(3): 9-20.CHEN Zhenghan, XIE Dingyi, WANG Yongsheng. Experimental studies of laws of fluid motion, suction and pore pressures in unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(3): 9-20. [7] KANG X Y, YUE Z Q. Dynamic modeling of minimum mass of pore-gas for triggering landslide in stable gentle soil slope[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2025, 17(2): 652-670. doi: 10.1016/j.jrmge.2024.02.019 [8] 谢定义. 21世纪土力学的思考[J]. 岩土工程学报, 1997, 19(4): 111-114.XIE Dingyi. Thoughts on soil mechanics in the 21 ST century[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(4): 111-114. [9] 李明玉, 孙文静. 生物炭改性填埋场覆盖层土的渗气特性研究[J]. 岩石力学与工程学报, 2022, 41(增2): 3543-3550.LI Mingyu, SUN Wenjing. Study on gas permeability characteristics of overburden soil in biochar modified landfill site[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S2): 3543-3550. [10] 陈云敏. 环境土工基本理论及工程应用[J]. 岩土工程学报, 2014, 36(1): 1-46.CHEN Yunmin. A fundamental theory of environmental geotechnics and its application[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 1-46. [11] 马志强, 赵林, 肖满. 化工污染场地VOCs分布迁移特征及浓度预测模型分析[J/OL]. 西南交通大学学报, 2025: 1-11. (2025-04-07). https://kns.cnki.net/kcms/detail/51.1277.U.20250407.1034.013.html. [12] 杨乾, 杨庆华, 陈峰, 等. 气爆过程中折板型竖井水力特性试验研究[J]. 西南交通大学学报, 2023, 58(5): 1026-1036.YANG Qian, YANG Qinghua, CHEN Feng, et al. Experimental study on hydraulic characteristics in baffle-drop shaft during gas explosion[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1026-1036. [13] 杨乾, 杨庆华, 陈峰. 折板型竖井内高压截留气团释放过程数值模拟[J/OL]. 西南交通大学学报, 2025: 1-10. (2025-02-26). https://kns.cnki.net/kcms/detail/51.1277.U.20250226.1434.008.html. [14] QIU Q W, ZHAN L T, LEUNG A K, et al. A new method and apparatus for measuring in situ air permeability of unsaturated soil[J]. Canadian Geotechnical Journal, 2021, 58(4): 514-530. doi: 10.1139/cgj-2019-0733 [15] ZHAN T L T, YANG Y B, CHEN R, et al. Influence of clod size and water content on gas permeability of a compacted loess[J]. Canadian Geotechnical Journal, 2014, 51(12): 1468-1474. doi: 10.1139/cgj-2014-0126 [16] EISCHENS G, SWANSON A. Proposed standard test method for measurement of pneumatic permeability of partially saturated porous materials by flowing air[J]. Geotechnical Testing Journal, 1996, 19(2): 232-238 doi: 10.1520/gtj10346j [17] CHEN R, HUANG J W, ZHOU C, et al. A new simple and low-cost air permeameter for unsaturated soils[J]. Soil and Tillage Research, 2021, 213: 105083. doi: 10.1016/j.still.2021.105083 [18] MOHAMMADI M H, VANCLOOSTER M. A simple device for field and laboratory measurements of soil air permeability[J]. Soil Science Society of America Journal, 2019, 83(1): 58-63. doi: 10.2136/sssaj2018.03.0114 [19] 丁朴荣. ZC-5型渗气仪的研制与渗气测试方法的研究[J]. 西安理工大学学报, 1986, 2(4): 37-52.DING Purong. The manufacture of type zc-5 air permeameter and a study on the measurement of air seepage[J]. Journal of Xi’an University of Technology, 1986, 2(4): 37-52. [20] 苗强强, 陈正汉, 张磊, 等. 非饱和黏土质砂的渗气规律试验研究[J]. 岩土力学, 2010, 31(12): 3746-3750, 3757.MIAO Qiangqiang, CHEN Zhenghan, ZHANG Lei, et al. Experimental study of gas permeability of unsaturated clayey sand[J]. Rock and Soil Mechanics, 2010, 31(12): 3746-3750,3757. [21] 葛苗苗, 朱才辉, 盛岱超, 等. 非饱和压实黄土渗气特性及细观渗气机制研究[J]. 岩石力学与工程学报, 2025, 44(1): 221-235.GE Miaomiao, ZHU Caihui, SHENG Daichao, et al. Study on the gas permeability of unsaturated compacted loess and its underlying micro-mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2025, 44(1): 221-235. [22] LADD C C. Mechanisms of swelling by compacted clay[J]. Highway Research Board Bulletin, 1960, 245: 10-26. [23] BROOKS RH, COREY AT. Hydraulic Properties of Porous Media[R]. Fort Collins: Colorado State University, 1964. [24] MATYAS E. Air and water permeability of compacted soils[J]. West Conshohocken: Permeability and capillarity of soils, 1967. [25] 刘奉银, 张昭, 周冬. 湿度和密度双变化条件下的非饱和黄土渗气渗水函数[J]. 岩石力学与工程学报, 2010, 29(9): 1907-1914.LIU Fengyin, ZHANG Zhao, ZHOU Dong. Density-saturation-dependent air-water permeability function of unsaturated loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1907-1914. [26] 陈存礼, 张登飞, 张洁, 等. 等向应力条件下原状Q3黄土的渗气特性研究[J]. 岩土工程学报, 2017, 39(2): 287-294.CHEN Cunli, ZHANG Dengfei, ZHANG Jie, et al. Gas permeability of intact Q3 loess under isotropic stresses[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 287-294. [27] CHEN C L, ZHANG D F, ZHANG J. Influence of stress and water content on air permeability of intact loess[J]. Canadian Geotechnical Journal, 2017, 54(9): 1221-1230. [28] 张登飞, 陈存礼, 陈惠, 等. 三轴应力条件下原状黄土的渗气特性[J]. 岩土工程学报, 2018, 40(增1): 93-99.ZHANG Dengfei, CHEN Cunli, CHEN Hui, et al. Gas permeability of intact loess under traixial stress conditions[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 93-99. [29] 曾刚, 李业学, 王婧, 等. 垃圾土气体渗透特性试验研究[J]. 广西大学学报(自然科学版), 2019, 44(5): 1317-1324.ZENG Gang, LI Yexue, WANG Jing, et al. Experimental study of gas permeability characteristics of municipal solid waste[J]. Journal of Guangxi University (Natural Science Edition), 2019, 44(5): 1317-1324. [30] 姚志华, 陈正汉, 黄雪峰, 等. 非饱和Q3黄土渗气特性试验研究[J]. 岩石力学与工程学报, 2012, 31(6): 1264-1273.YAO Zhihua, CHEN Zhenghan, HUANG Xuefeng, et al. Experimental research on gas permeability of unsaturated Q3 loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1264-1273. [31] FICK A. Ueber die Diffusion[J]. Annalen der Physik und Chemie, 1855, 170(1): 59-86. [32] 李铁, 皮希宇. 深部煤层低瓦斯耦合灾变机制[J]. 煤炭学报, 2019, 44(4): 1107-1114.LI Tie, PI Xiyu. Coupling catastrophes mechanism of low-gas in deep coal seams[J]. Journal of China Coal Society, 2019, 44(4): 1107-1114. [33] VAN G, M. Th. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. [34] BURDINE N T. Relative permeability calculations from pore size distribution data[J]. Journal of Petroleum Technology, 1953, 5(3): 71-78. [35] MUALEM Y. Modified approach to capillary hysteresis based on a similarity hypothesis[J]. Water Resources Research, 1973, 9(5): 1324-1331. [36] WANG J D, ZHANG D F, ZHANG Y S, et al. Variations in hydraulic properties of collapsible loess exposed to wetting and shearing[J]. Acta Geotechnica, 2022, 17(7): 2995-3015. [37] 郭楠. 非饱和土的增量非线性横观各向同性本构模型研究[D]. 兰州: 兰州理工大学, 2018. [38] 张桓伟. 基于修正VG模型的非饱和土热—水—力耦合过程研究[D]. 北京: 北京建筑大学, 2023. -
下载: