Seismic Behavior of Earthen-Stone Masonry Walls in Traditional Tibetan Dwellings in Western Sichuan
-
摘要:
为明确川西地区藏寨民居中生土片石石砌体墙的抗震性能,设计并制作了四片生土片石石砌体墙构件,开展拟静力加载试验,以木墙筋设置、墙体收分以及墙体窗洞口作为主要参数,研究其对生土片石石砌体墙抗震性能的影响规律. 通过试验获得生土片石石砌体墙的水平荷载-位移曲线,分析其承载力、变形性能、刚度、延性和耗能能力等关键抗震性能指标,探讨墙体开洞及木墙筋设置对墙体破坏模式的影响,并对藏寨生土片石石砌体墙与普通砖砌体墙的抗剪强度进行对比分析. 研究结果表明:藏寨生土片石石砌体墙整体表现出良好的抗震性能及变形能力,本试验中各墙体构件的平均单位面积抗剪强度达到0.16 N/mm2,极限变形能力在2.4%~3.0%,其变形能力相对于普通砖砌体墙有明显优势;窗洞口及木墙筋的设置均会影响墙体的破坏形态及破坏模式;与无木墙筋的墙体相比,配置木墙筋的墙体抗剪强度和耗能能力分别提升约27%和37%,同时,剪切裂缝数量及裂缝宽度均显著减小.
Abstract:To clarify the seismic behavior of earthen-stone masonry walls in traditional Tibetan dwellings in Western Sichuan, four earthen-stone masonry wall specimens were designed, fabricated, and used for conducting quasi-static loading tests. Timber wall reinforcement installation, wall tapering, and wall window openings were adopted as the main parameters to study their influence mechanisms on the seismic behavior of earthen-stone masonry walls. Through the tests, the horizontal load–displacement curves of the earthen-stone masonry walls were obtained, and key seismic performance indicators including bearing capacity, deformation capacity, stiffness, ductility, and energy dissipation capacity were analyzed. The influence of wall openings and timber wall reinforcement installation on the failure mode of the wall was discussed, and a comparative analysis of the shear strength between the earthen-stone masonry walls in Tibetan dwellings and ordinary brick masonry walls was conducted. The research results indicate that the earthen-stone masonry walls in Tibetan dwellings in Western Sichuan generally exhibit good seismic behavior and deformation capacity. In this test, the average shear strength per unit area of each wall component reaches 0.16 N/mm2, and the ultimate deformation capacity is in the range of 2.4%–3.0%, with its deformability showing obvious advantages compared with ordinary brick masonry walls. Both window openings and timber wall reinforcement installation affect the failure morphology and failure mode of the walls. Compared with walls without timber wall reinforcement, the shear strength and energy dissipation capacity of walls equipped with timber wall reinforcement are increased by approximately 27% and 37%, respectively. Meanwhile, the number and width of shear cracks are significantly reduced.
-
表 1 生土片石石砌体墙构件参数
Table 1. Parameters of earthen-stone masonry wall specimens
构件
编号墙体
宽度/mm墙体
高度/mm墙体
厚度/mm是否
开窗墙体
收分/%墙筋
布置竖向
压力/MPaZQW-1 1400 1000 200 否 0 无 0.45 ZQW-2 200 是 0 无 ZQW-3 200 是 0 有 ZQW-4 200/180 是 10.0 有 表 2 材料性能试验结果
Table 2. Test results of material properties
材料 σs/Mpa E/GPa 石材 44.06 4.21 黄泥 1.26 表 3 构件位移特征点及位移延性系数
Table 3. Displacement characteristic points and displacement ductility coefficient of specimens
构件编号 Δy1/mm Δy2/mm Δu/mm μ1 μ2 ZQW-1 6.87 4.76 30.24 4.40 6.35 ZQW-2 7.90 4.73 29.89 3.78 6.32 ZQW-3 8.07 5.35 27.39 3.40 5.12 ZQW-4 6.99 3.84 23.97 3.43 6.24 表 4 构件各循环耗能及等效黏滞阻尼系数
Table 4. Cyclic energy dissipation and equivalent viscous damping coefficients of specimens
位移角/% Ei ζeq ZQW-1 ZQW-2 ZQW-3 ZQW-4 ZQW-1 ZQW-2 ZQW-3 ZQW-4 0.5 165.9 96.9 94.5 110.0 22.3 19.2 15.9 15.6 0.8 292.5 193.0 184.1 207.1 19.4 18.8 17.1 18.4 1.0 418.9 245.5 254.5 274.7 20.9 18.6 16.0 18.6 1.5 781.1 421.4 515.2 528.7 25.6 21.0 20.6 21.1 2.0 1159.7 535.9 817.5 732.7 27.3 19.9 22.7 24.6 2.5 1547.6 670.2 1104.0 772.3 31.7 18.4 25.8 22.6 累积耗能 4365.8 2162.7 2969.7 2625.5 表 5 砌体墙体抗剪强度比较
Table 5. Comparison of shear strength of masonry walls
来源 构件尺寸(高×宽×厚)/mm 最大承载力/kN 最大变形角/% 单位面积抗剪承载力/(N·mm−2) 本试验 1000 ×1400 ×20038.32 3.00 0.137 1000 ×1400 /800×20024.77 3.00 0.154 30.39 3.00 0.189 27.44 2.50 0.172 文献[29] 1100 ×1200 ×18518.14 3.60 0.082 27.25 4.60 0.123 文献[30] 1000 ×1900×240130.00 0.80 0.285 文献[27] 1390 ×1970×20077.40 0.40 0.196 文献[31] 2700 ×3150 ×205120.00 0.25 0.190 文献[32] 1820× 2520 ×250157.35 0.71 0.250 -
[1] 胡滨. 空间模式连接传统与当下的方法研究: 以藏式乡村民居为例[J]. 建筑学报, 2023(5): 74-81.HU Bin. Spatial pattern as a method to connect the present with traditions a case study on rural folk houses in Tibet[J]. Architectural Journal, 2023(5): 74-81. [2] 徐宗威. 西藏传统建筑导则[M]. 北京: 中国建筑工业出版社, 2004. [3] 木雅•曲吉建才. 西藏民居[M]. 北京: 中国建筑工业出版社, 2009. [4] 李军环, 陈媛. 川西中路嘉绒藏族民居的生态智慧与更新设计[J]. 西安建筑科技大学学报(自然科学版), 2012, 44(4): 512-516.LI Junhuan, CHEN Yuan. Ecological wisdom and renewal of Jiarong Tibetan residence in Zhonglu, west Sichuan Province[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2012, 44(4): 512-516. [5] 李碧雄, 王甜恬, 赵开鹏, 等. 传统藏式民居的典型震害及易损性研究[J]. 建筑结构学报, 2021, 42(增1): 165-173.LI Bixiong, WANG Tiantian, ZHAO Kaipeng, et al. Study on typical earthquake damage and vulnerability of traditional Tibetan dwellings[J]. Journal of Building Structures, 2021, 42(S1): 165-173. [6] 潘毅, 陈齐, 曹勇, 等. 马尔康6.0级震群地震藏族民居震害调查与分析[J]. 土木工程学报, 2024, 57(3): 1-15.PAN Yi, CHEN Qi, CAO Yong, et al. Seismic damage investigation and analysis of Tibetan dwellings in the Ms 6.0 Maerkang earthquake swarm[J]. China Civil Engineering Journal, 2024, 57(3): 1-15. [7] 潘毅, 陈齐, 汪瀛, 等. 定日6.8级地震村镇建筑震害调查与分析[J/OL]. 土木工程学报, 2025: 1-18. (2025-08-19). https://link.cnki.net/doi/10.15951/j.tmgcxb.25050297. [8] 王言侨, 李祥秀, 王宁, 等. 西藏定日6.8级地震民居震害原因分析[J]. 地震工程学报, 2025, 47(3): 700-708.WANG Yanqiao, LI Xiangxiu, WANG Ning, et al. Causes of damage to residential buildings during the Dingri MS6.8 earthquake in Xizang[J]. China Earthquake Engineering Journal, 2025, 47(3): 700-708. [9] 张钰曼, 邱虎, 叶阳, 等. 西藏定日6.8级地震房屋震害特征调查[J]. 地球科学, 2025, 50(8): 3301-3315.ZHANG Yuman, QIU Hu, YE Yang, et al. Seismic damage characteristics investigation of Dingri Ms6.8 earthquake in Xizang[J]. Earth Science, 2025, 50(8): 3301-3315. [10] 王艳, 敖仪斌, 许强, 等. 2025年西藏定日6.8级地震农房震害调查与分析[J]. 安全与环境工程, 2025, 32(2): 31-40, 64.WANG Yan, AO Yibin, XU Qiang, et al. Seismic damage investigation and analysis of rural residential buildings in 2025 Dingri 6.8-magnitude earthquake in Xizang[J]. Safety and Environmental Engineering, 2025, 32(2): 31-40,64. [11] 谭莎莎, 杨莹辉, 许强, 等. 2025年1月7日西藏定日MS 6.8级强震地表同震形变特征与房屋建筑震损分析[J]. 成都理工大学学报(自然科学版), 2025, 52(2): 212-222. doi: 10.12474/cdlgzrkx.2025011903TAN Shasha, YANG Yinghui, XU Qiang, et al. Coseismic deformation and seismic damage assessment of buildings from the MS 6.8 earthquake in Dingri, Xizang, on January 7, 2025[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2025, 52(2): 212-222. doi: 10.12474/cdlgzrkx.2025011903 [12] 刘伟兵, 崔利富, 孙建刚, 等. 藏族民居石砌体基本力学性能试验与数值仿真[J]. 大连民族学院学报, 2015, 17(3): 252-256.LIU Weibing, CUI Lifu, SUN Jiangang, et al. Tests and numerical simulation of basic mechanical properties of Tibetan dwellings stone masonry[J]. Journal of Dalian Nationalities University, 2015, 17(3): 252-256. [13] 甄昊. 阿坝州生土石砌体结构在地震作用下的抗倒塌分析[D]. 成都: 西南交通大学, 2016. [14] 汪源, 黄辉, 高仕禹, 等. 基于不规则块体几何指标的藏式毛石墙体抗震性能研究[J]. 建筑结构学报, 2022, 43(11): 200-208.WANG Yuan, HUANG Hui, GAO Shiyu, et al. Seismic performance analysis of Tibetan rubble stone walls based on irregular block geometry indexes[J]. Journal of Building Structures, 2022, 43(11): 200-208. [15] 许浒, 杜宁宁, 余志祥, 等. 川西藏羌石砌民居建筑的抗地震倒塌性能[J]. 西南交通大学学报, 2019, 54(5): 1021-1029, 1046.XU Hu, DU Ningning, YU Zhixiang, et al. Seismic collapse-resistant performance of stone houses in Tibetan and Qiang autonomous prefectures of western Sichuan[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1021-1029, 1046. [16] 李想, 孙建刚, 王振, 等. 藏寨石砌体墙抗震及加固性能数值仿真分析[J]. 大连民族大学学报, 2018, 20(5): 437-440.LI Xiang, SUN Jiangang, WANG Zhen, et al. Numerical simulation analysis of anti-seismic and reinforcement performance for stone masonry wall of Tibetan Village[J]. Journal of Dalian Minzu University, 2018, 20(5): 437-440. [17] 中华人民共和国住房和城乡建设部. 木结构设计标准: GB 50005—2017[S]. 北京: 中国建筑工业出版社, 2017. [18] 中华人民共和国住房和城乡建设部. 工程岩体试验方法标准: GB/T 50266—2013[S]. 北京: 中国计划出版, 2013. [19] 中华人民共和国住房和城乡建设部. 建筑砂浆基本性能试验方法标准: JGJ/T 70—2009[S]. 北京: 中国建筑工业出版社, 2009. [20] 中华人民共和国住房和城乡建设部. 建筑抗震试验规程: JGJ/T 101—2015[S]. 北京: 中国建筑工业出版社, 2015. [21] 冯鹏, 强翰霖, 叶列平. 材料、构件、结构的“屈服点” 定义与讨论[J]. 工程力学, 2017, 34(3): 36-46.FENG Peng, QIANG Hanlin, YE Lieping. Discussion and definition on yield points of materials, members and structures[J]. Engineering Mechanics, 2017, 34(3): 36-46. [22] 蒋利学, 王卓琳, 张富文. 多层砌体结构的损坏程度与层间位移角限值[J]. 建筑结构学报, 2018, 39(增2): 263-270.JIANG Lixue, WANG Zhuolin, ZHANG Fuwen. Damage degree and inter-story drift angle limit of multi-story masonry structures [J], Journal of Building Structures, 2018, 39(S2): 263-270. [23] 史庆轩, 易文宗. 多孔砖砌体墙片的抗震性能试验研究及抗倒塌能力分析[J]. 西安建筑科技大学学报(自然科学版), 2000, 32(3): 271-275.SHI Qingxuan, YI Wenzong. Tentative studies on the aseismic behavior and investigation of collapse resistant capacity of porous masonry walls[J]. Journal of Xi’an University of Architecture & Technology, 2000, 32(3): 271-275. [24] 史庆轩, 易文宗, 刘伯权. 多孔砖砌体开窗洞纵墙片的抗震性能研究[J]. 世界地震工程, 2000, 16(2): 30-34.SHI Qingxuan, YI Wenzong, LIU Boquan. Experimental study on seismic behavior for porous masonry longitudinal wall piece between windows[J]. World Information on Earthquake Engineering, 2000, 16(2): 30-34. [25] 朱伯龙, 吴明舜, 蒋志贤. 在周期荷载作用下砖砌体基本性能的试验研究[J]. 同济大学学报, 1980, 8(2): 1-14.ZHU Bolong, WU Mingshun, JIANG Zhixian. Experimental study on basic behaviour of brick masonry under reversed loading[J]. Journal of Tongji University, 1980, 8(2): 1-14. [26] 李超, 郭猛. 小开洞砌体墙抗震性能研究[J]. 建筑科学与工程学报, 2023, 40(3): 92-101.LI Chao, GUO Meng. Investigation on seismic behavior of masonry walls with small openings[J]. Journal of Architecture and Civil Engineering, 2023, 40(3): 92-101. [27] 菅野稜真, 崔琥. 組積造壁の耐震性能評価に関する研究 (その 1)開口の有無をパラメータとした面内静的載荷実験[C]//日本建築学会大会学術講演梗概集. 名古屋: 日本建築学会, 2021: 781-782. [28] 杨娜, 滕东宇. 藏式石砌体在剪-压复合作用下抗剪性能研究[J]. 工程力学, 2020, 37(2): 221-229.YANG Na, TENG Dongyu. Shear performance of Tibetan stone masonry under shear-compression loading[J]. Engineering Mechanics, 2020, 37(2): 221-229. [29] 姚新强, 孙柏涛, 王明振, 等. 我国农村典型砖砌体墙片拟静力试验研究[J]. 工程力学, 2017, 34(6): 198-209.YAO Xinqiang, SUN Baitao, WANG Mingzhen, et al. Study on the pseudo-static tests of typical brick masonry walls in rural China[J]. Engineering Mechanics, 2017, 34(6): 198-209. [30] 贡忠义. 砌体结构抗震措施整体作用研究[D]. 西安: 西安建筑科技大学, 2003. [31] NATEGHI F A, ALEMI F. Experimental study of seismic behavior of typical iranian urm brick walls[R]. Beijing: National Information Center of Earthquake Engineering, 2008. [32] CHURILOV S, DUMOVA-JOVANOSKA E. In-plane shear behaviour of unreinforced and jacketed brick masonry walls[J]. Soil Dynamics and Earthquake Engineering, 2013, 50: 85-105. doi: 10.1016/j.soildyn.2013.03.006 -
下载: