• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

高速磁浮牵引系统供电分区与定子段优化设计

郑彦喜 葛琼璇 张波 朱进权 赵鲁

郑彦喜, 葛琼璇, 张波, 朱进权, 赵鲁. 高速磁浮牵引系统供电分区与定子段优化设计[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20250224
引用本文: 郑彦喜, 葛琼璇, 张波, 朱进权, 赵鲁. 高速磁浮牵引系统供电分区与定子段优化设计[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20250224
ZHENG Yanxi, GE Qiongxuan, ZHANG Bo, ZHU Jinquan, ZHAO Lu. Optimization Design of Power Supply Partitions and Stator Segments in High-Speed Maglev Traction System[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20250224
Citation: ZHENG Yanxi, GE Qiongxuan, ZHANG Bo, ZHU Jinquan, ZHAO Lu. Optimization Design of Power Supply Partitions and Stator Segments in High-Speed Maglev Traction System[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20250224

高速磁浮牵引系统供电分区与定子段优化设计

doi: 10.3969/j.issn.0258-2724.20250224
基金项目: 国家重点研发计划(2023YFB4302501-02);国家自然科学基金(52472388)
详细信息
    作者简介:

    郑彦喜(1996—),男,博士研究生,研究方向为高速磁浮牵引系统能效优化技术,E-mail:zhengyanxi@mail.iee.ac.cn

    通讯作者:

    葛琼璇(1967—),女,研究员,博士生导师,研究方向为高速磁浮牵引供电技术及高压大功率变流技术,E-mail: gqx@mail.iee.ac.cn

  • 中图分类号: U237

Optimization Design of Power Supply Partitions and Stator Segments in High-Speed Maglev Traction System

  • 摘要:

    为提升高速磁浮牵引供电系统的经济性,基于改进遗传算法提出一种供电分区与定子段长度的优化设计方法. 首先,通过分析双端供电模式下的等效电路建立牵引系统的数学模型,结合追踪间隔时间与牵引性能约束推导出供电分区的有效范围为20~40 km;然后,基于换步控制与牵引性能约束确定定子段的设计长度为600~2000 m,在此基础上,采用动态约束自适应遗传算法,以综合经济成本最小化为目标,分别对供电分区与定子段长度进行优化设计;最后,选取沪杭磁浮规划线与上海磁浮示范线作为验证对象,通过硬件在环实验获取列车动态运行数据,对优化前后的牵引系统综合经济成本进行对比分析. 研究结果表明:沪杭线案例中,传统设计方案需设置7个27 km等长供电分区,优化方案调整为6个差异化分区,其中端部区段为20 km,中部区段集中在37 km左右,综合经济成本降幅为14.25%;对于上海磁浮示范线,既有方案采用25个长度约为1200 m的定子段,优化方案生成26个不等长定子段,形成“强流短距、弱流长距”的电流匹配布局,综合经济成本降幅为19.1%.

     

  • 图 1  高速磁浮牵引供电系统结构图

    Figure 1.  Structures of traction power supply system of high-speed maglev

    图 2  双端供电模式下的牵引系统电路原理图

    Figure 2.  Circuit principle of traction system in dual-feeding power supply mode

    图 3  磁浮列车追踪间隔示意图

    Figure 3.  Maglev train tracking interval

    图 4  基于DC-GA的供电分区优化设计流程图

    Figure 4.  Flowchart of optimization design for power supply partitions based on DC-GA

    图 5  两步法换步时的电机定子电流与牵引力

    Figure 5.  Stator current and traction force of motor during two-step changing method

    图 6  不同运行速度时的定子段最小长度

    Figure 6.  Minimum length of stator segments under different operating speeds

    图 7  高速磁浮牵引半实物系统

    Figure 7.  Semi-physical traction system of high-speed maglev

    图 8  高速磁浮列车多分区运行时的速度与位置曲线

    Figure 8.  Speed and position curves of high-speed maglev in multi-partition operation

    图 9  牵引供电分区优化结果

    Figure 9.  Optimization results of traction power supply partitions

    图 10  高速磁浮列车单分区运行时的速度与位置曲线

    Figure 10.  Speed and position curves of high-speed maglev train in single-partition operation

    图 11  定子段长度优化结果

    Figure 11.  Optimization results of stator segment length

    表  1  不同平均速度与追踪间隔下的供电分区最大长度

    Table  1.   Maximum length of power supply partitions under different average speeds and tracking intervals

    追踪间隔/min 供电分区最大长度/km
    200 km/h 300 km/h 400 km/h 500 km/h
    5 16.7 25.0 33.3 41.6
    6 20.0 30.0 40.0 50.0
    7 23.3 35.0 46.6 58.3
    8 26.6 40.0 53.3 66.6
    9 30.0 45.0 60.0 75.0
    下载: 导出CSV

    表  2  高速磁浮供电分区长度与最高巡航速度的关系

    Table  2.   Correlation between power supply partition length and maximum cruising speed of high-speed maglev

    供电分区长度/ km 最高运行速度/( km•h−1
    3编组 5编组 8编组
    10 521 508 467
    20 514 500 457
    30 501 484 443
    40 485 468 430
    50 469 455 417
    60 457 441 406
    下载: 导出CSV

    表  3  不同运行速度及剩余加速度下的定子段最大长度

    Table  3.   Maximum length of stator segment under different operating speeds and remaining accelerations

    加速度/ (m•s−2 定子段最大长度/m
    100 km/h 200 km/h 300 km/h 430 km/h 500 km/h
    0 5000 5000 5000 3550 2150
    0.2 5000 5000 4450 2000 1250
    0.4 5000 5000 2900 1300 800
    0.6 5000 3800 - - -
    下载: 导出CSV

    表  4  牵引供电系统参数

    Table  4.   Parameters of traction power supply system

    系统参数 数值
    单位长度定子绕组电阻/(Ω•km−1 2.54 × 10−1
    单位长度定子绕组电感/(H•km−1 2.60 × 10−3
    单位长度馈电电缆电阻/(Ω•km−1 5.83 × 10−2
    单位长度馈电电缆电感/(H•km−1 1.42 × 10−4
    牵引力系数/(kN•kA−1 42
    变流器容量/MVA 24
    列车总质量/t 308
    列车编组数 5
    下载: 导出CSV

    表  5  供电分区设计传统方案与优化方案综合成本对比

    Table  5.   Comprehensive cost comparison between traditional and optimized schemes for power supply partition design

    供电分区长度/km综合成本/万元
    传统方案[27.00;27.00;27.00;27.00;27.00;27.00;27.00]19937.26
    优化方案[20.00;37.54;37.09;37.11;37.24;20.00]17095.34
    下载: 导出CSV

    表  6  定子段设计现行方案与优化方案综合成本对比

    Table  6.   Comprehensive cost comparison between traditional and optimized schemes for stator segment design

    定子段长度/km 综合成本/万元
    传统方案 [1036115912061223117711891238118912381192118011891188122012201161123211761235127212221218118011161177] 16588.78
    优化方案 [900;704;800;790;793;874;884;952;1064119113201338160216681792;1950;2000;1617147513561120;985;800;744;681;600] 13419.70
    下载: 导出CSV
  • [1] 熊嘉阳, 沈志云, 池茂儒, 等. 高速磁悬浮列车技术综述[J]. 交通运输工程学报, 2025, 25(2): 1-23. doi: 10.19818/j.cnki.1671-1637.2025.02.001

    XIONG Jiayang, SHEN Zhiyun, CHI Maoru, et al. Review on high-speed maglev train technology[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 1-23. doi: 10.19818/j.cnki.1671-1637.2025.02.001
    [2] 林国斌, 刘万明, 徐俊起, 等. 中国高速磁浮交通的发展机遇与挑战[J]. 前瞻科技, 2023, 2(4): 7-18. doi: 10.3981/j.issn.2097-0781.2023.04.001

    LIN Guobin, LIU Wanming, XU Junqi, et al. Opportunities and challenges for the development of high-speed maglev transportation in China[J]. Science and Technology Foresight, 2023, 2(4): 7-18. doi: 10.3981/j.issn.2097-0781.2023.04.001
    [3] 邓自刚, 刘宗鑫, 李海涛, 等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报, 2022, 57(3): 455-474, 530. doi: 10.3969/j.issn.0258-2724.20220001

    DENG Zigang, LIU Zongxin, LI Haitao, et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455-474,530. doi: 10.3969/j.issn.0258-2724.20220001
    [4] 康劲松, 丁浩, 倪菲, 等. 计及悬浮系统影响的高速磁浮直线同步电机建模方法[J]. 西南交通大学学报, 2024, 59(4): 729-736. doi: 10.3969/j.issn.0258-2724.20230431

    KANG Jinsong, DING Hao, NI Fei, et al. Modeling of high-speed maglev linear synchronous motors considering influence of suspension system[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 729-736. doi: 10.3969/j.issn.0258-2724.20230431
    [5] ZHU J Q, CAO X Q, GE Q X, et al. Adaptive-SMO-based traction force fluctuation suppression strategy considering suspension system for high-speed maglev train[J]. IEEE Transactions on Industrial Electronics, 2024, 71(3): 2289-2299. doi: 10.1109/TIE.2023.3270525
    [6] CAO X Q, GE Q X, ZHU J Q, et al. Improved sliding mode traction control combined sliding mode disturbance observer strategy for high-speed maglev train[J]. IEEE Transactions on Power Electronics, 2023, 38(1): 827-838. doi: 10.1109/TPEL.2022.3201614
    [7] 李自康, 戴春辉, 黄翠翠, 等. 基于多种群遗传算法的磁浮列车自抗扰速度控制[J]. 西南交通大学学报, 2025, 60(4): 912-920. doi: 10.3969/j.issn.0258-2724.20240113

    LI Zikang, DAI Chunhui, HUANG Cuicui, et al. Active disturbance rejection speed control for maglev trains based on multiple population genetic algorithm[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 912-920. doi: 10.3969/j.issn.0258-2724.20240113
    [8] 张昕, 翟凌露, 王舰深, 等. 基于加权融合的常导高速磁浮列车UKF定位算法[J]. 西南交通大学学报, 2024, 59(4): 832-838. doi: 10.3969/j.issn.0258-2724.20230501

    ZHANG Xin, ZHAI Linglu, WANG Jianshen, et al. Weighted fusion-based unscented Kalman filter positioning algorithm for normal-conducting high-speed maglev trains[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 832-838. doi: 10.3969/j.issn.0258-2724.20230501
    [9] MA Z X, NIU H C, ZHANG X, et al. Virtual space vector overmodulation strategy for NPC three-level inverters with common-mode voltage suppression[J]. IEEE Transactions on Power Electronics, 2024, 39(6): 6877-6888. doi: 10.1109/TPEL.2024.3375348
    [10] ZHAO M T, GE Q X, ZHU J Q, et al. Improved synchronized SVPWM strategy for high-power three-level active neutral point clamped traction inverter[J]. IEEE Transactions on Power Electronics, 2025, 40(2): 3189-3209. doi: 10.1109/TPEL.2024.3487528
    [11] GAO Z, GE Q X, LI Y H, et al. Hybrid improved carrier-based PWM strategy for three-level neutral-point-clamped inverter with wide frequency range[J]. IEEE Transactions on Power Electronics, 2021, 36(7): 8517-8538. doi: 10.1109/TPEL.2020.3047952
    [12] 葛琼璇, 张波, 韦榕, 等. 高速磁浮交通牵引供电与控制技术现状及展望[J]. 前瞻科技, 2023, 2(4): 89-95. doi: 10.3981/j.issn.2097-0781.2023.04.009

    GE Qiongxuan, ZHANG Bo, WEI Rong, et al. Present situation and prospect of traction power supply and control technologies for highspeed maglev transportation[J]. Science and Technology Foresight, 2023, 2(4): 89-95. doi: 10.3981/j.issn.2097-0781.2023.04.009
    [13] 魏远乐, 郝文瑾, 刘建强. 高速磁浮列车供电分区及定子段设计方法研究[J]. 铁道建筑技术, 2020(12): 1-5, 12.

    WEI Yuanle, HAO Wenjin, LIU Jianqiang. Research on the design method of power supply division and stator segment of high-speed maglev train[J]. Railway Construction Technology, 2020(12): 1-5,12.
    [14] 丁文亮. 中速磁浮列车追踪间隔时间计算方法及供电分区划分优化研究[D]. 北京: 北京交通大学, 2019.
    [15] 林滢, 秦峰. 600 km/h高速磁浮牵引系统的配置及其关键参数的选择[J]. 城市轨道交通研究, 2023, 26(8): 110-113. doi: 10.16037/j.1007-869x.2023.08.019

    LIN Ying, QIN Feng. Configuration for 600 km/h high-speed maglev traction system and selection of key parameters[J]. Urban Mass Transit, 2023, 26(8): 110-113. doi: 10.16037/j.1007-869x.2023.08.019
    [16] ZHAO M T, GE Q X. Grid-side harmonic current suppression based on carrier phase-shifted PWM and extended state observer for high-power multiple parallel 3L-ANPC rectifier[J]. IEEE Transactions on Industrial Electronics, 2024, 71(6): 5399-5410. doi: 10.1109/TIE.2023.3294648
    [17] 姜西. 常导高速磁浮列车追踪间隔研究[J]. 机车电传动, 2025(1): 175-181. doi: 10.13890/j.issn.1000-128X.2025.01.110

    JIANG Xi. Study on tracking interval of normal-conducting high-speed maglev trains[J]. Electric Drive for Locomotives, 2025(1): 175-181. doi: 10.13890/j.issn.1000-128X.2025.01.110
    [18] 朱进权, 葛琼璇, 孙鹏琨, 等. 高速磁悬浮列车在双端供电模式下的电流控制策略[J]. 电工技术学报, 2021, 36(23): 4937-4947.

    ZHU Jinquan, GE Qiongxuan, SUN Pengkun, et al. Current control strategy for high-speed maglev in the double feeding mode[J]. Transactions of China Electrotechnical Society, 2021, 36(23): 4937-4947.
    [19] 张雯柏, 林国斌, 康劲松, 等. 考虑相移补偿的磁浮列车长定子高频注入无传感控制方法[J]. 西南交通大学学报, 2025, 60(4): 1032-1041. doi: 10.3969/j.issn.0258-2724.20240310

    ZHANG Wenbai, LIN Guobin, KANG Jinsong, et al. Sensorless control method of high-frequency injection for long-stator synchronous motor of maglev trains considering phase shift compensation[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 1032-1041. doi: 10.3969/j.issn.0258-2724.20240310
    [20] XIAO X Y, XU W, TANG Y R, et al. Improved loss minimization control based on time-harmonic equivalent circuit for linear induction motors adopted to linear metro[J]. IEEE Transactions on Vehicular Technology, 2023, 72(7): 8601-8612. doi: 10.1109/TVT.2023.3244602
    [21] 孙鹏琨, 葛琼璇, 王晓新, 等. 基于降阶观测器的高速磁浮列车无速度传感器控制算法[J]. 中国电机工程学报, 2020, 40(4): 1302-1309, 1421. doi: 10.13334/j.0258-8013.pcsee.190691

    SUN Pengkun, GE Qiongxuan, WANG Xiaoxin, et al. Sensorless control strategy of high speed maglev based on reduced order observer[J]. Proceedings of the CSEE, 2020, 40(4): 1302-1309,1421. doi: 10.13334/j.0258-8013.pcsee.190691
    [22] 彭兵, 王成元, 夏加宽, 等. 磁动势法五相永磁力矩电机转矩分析[J]. 中国电机工程学报, 2012, 32(21): 105-111.

    PENG Bing, WANG Chengyuan, XIA Jiakuan, et al. Torque analysis of five-phase permanent magnet torque motors based on magnetic motive force[J]. Proceedings of the CSEE, 2012, 32(21): 105-111.
    [23] 邓连波, 陈晨, 静恩伟, 等. 高速磁浮车站列车作业优化与能力分析[J]. 铁道科学与工程学报, 2023, 20(11): 4041-4049. doi: 10.19713/j.cnki.43-1423/u.T20222325

    DENG Lianbo, CHEN Chen, JING Enwei, et al. Train operation optimization and capability analysis of high-speed maglev station[J]. Journal of Railway Science and Engineering, 2023, 20(11): 4041-4049. doi: 10.19713/j.cnki.43-1423/u.T20222325
    [24] DING Z S, FAN X H, SONG B S, et al. NSGA-II model-based dielectric frequency response parameters for aging and moisture analysis of transformer insulation[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 3518710.
    [25] 王娟. 磁悬浮列车用长定子直线同步电机特性研究与故障分析[D]. 北京: 中国科学院电工研究所. 2004.
    [26] 刘江伟. 沪杭高速磁浮通道线路方案研究[J]. 铁道标准设计, 2024, 68(8): 23-29. doi: 10.13238/j.issn.1004-2954.202301060005

    LIU Jiangwei. Research on Shanghai-Hangzhou high speed maglev line scheme[J]. Railway Standard Design, 2024, 68(8): 23-29. doi: 10.13238/j.issn.1004-2954.202301060005
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  24
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-28
  • 修回日期:  2025-10-14
  • 网络出版日期:  2025-12-29

目录

    /

    返回文章
    返回