• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

自动驾驶车辆博弈换道决策

任园园 靳遥 郑雪莲 李显生 赵兰

任园园, 靳遥, 郑雪莲, 李显生, 赵兰. 自动驾驶车辆博弈换道决策[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20250168
引用本文: 任园园, 靳遥, 郑雪莲, 李显生, 赵兰. 自动驾驶车辆博弈换道决策[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20250168
REN Yuanyuan, JIN Yao, ZHENG Xuelian, LI Xiansheng, ZHAO Lan. Game-Theoretic Lane-Changing Decision-Making for Autonomous Vehicles[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20250168
Citation: REN Yuanyuan, JIN Yao, ZHENG Xuelian, LI Xiansheng, ZHAO Lan. Game-Theoretic Lane-Changing Decision-Making for Autonomous Vehicles[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20250168

自动驾驶车辆博弈换道决策

doi: 10.3969/j.issn.0258-2724.20250168
基金项目: 国家重点研发计划(2023YFC3009600,2023YFC3009605)
详细信息
    作者简介:

    任园园(1982—),女,教授,博士,研究方向为车辆行驶安全及智能测试技术,E-mail:renyy@jlu.edu.cn

    通讯作者:

    郑雪莲(1987—),女,副教授,博士,研究方向为车辆行驶安全及智能测试技术,E-mail: zhengxuelian@jlu.edu.cn

  • 中图分类号: U491

Game-Theoretic Lane-Changing Decision-Making for Autonomous Vehicles

  • 摘要:

    针对自主式交通系统中自动驾驶车辆的换道决策难题,提出一种基于不完全信息动态博弈的换道决策模型. 首先,基于博弈论思想,明确换道意图判断、博弈换道条件以及模型求解等核心问题,并建立相应的博弈框架;为优化收益函数,构建一个综合考虑安全性、效率性和舒适性的多目标收益函数,选择合适的特征对各目标收益进行量化处理,并结合逆强化学习方法从NGSIM数据中学习权重分配,确保了决策的多维度考量. 实验结果显示:无论是在博弈成功还是失败的交通场景中,所提模型都能有效提升决策的安全性和效率;相较于传统的防御型换道模型,该模型在提高行驶效率方面表现更为优越,展现了其在自动驾驶换道决策中的实用性和优势;此外,通过SUMO仿真验证,模型在真实高速公路场景中表现出良好的安全性和通行效率,能有效适应交通流变化,保障车辆安全高效行驶,验证了其在自动驾驶换道决策中的实用价值.

     

  • 图 1  换道场景

    Figure 1.  Lane-changing scenario

    图 2  换道决策模型

    Figure 2.  Lane-changing decision model

    图 3  换道决策阶段轨迹提取结果

    Figure 3.  Trajectory extraction results of lane-changing decision-making stage

    图 4  换道车辆与目标车道后车的交互范围

    Figure 4.  Interaction range between lane-changing vehicle and following vehicle in target lane

    图 5  基于换道博弈模型的博弈过程(博弈成功工况)

    Figure 5.  Game process based on lane-changing game model (successful game scenario)

    图 6  基于换道博弈模型的博弈过程(博弈失败工况)

    Figure 6.  Game process based on lane-changing game model (failed game scenario)

    图 7  防御型博弈模型的博弈过程

    Figure 7.  Game process of defensive game model

    图 8  实验仿真场景

    Figure 8.  Experimental simulation scenario

    图 9  不同交通流密度下对比

    Figure 9.  Comparison under different traffic flow densities

    表  1  收益矩阵

    Table  1.   Payoff matrix

    车辆类型 换道策略 PFV
    加速 减速
    LV 换道 $ \left(U_{\text{LV},11},U_{\text{PFV},11}\right) $ $ \left(U_{\text{LV},12},U_{\text{PFV},12}\right) $
    不换道 $ \left(U_{\text{LV},21},U_{\text{PFV},21}\right) $ $ \left(U_{\text{LV},22},U_{\text{PFV},22}\right) $
    下载: 导出CSV

    表  2  状态集和动作集

    Table  2.   State set and action set

    参数 状态集 动作集
    相对
    距离/m
    相对
    速度/(m•s−1
    本车
    速度/(m•s−1
    转向/
    rad
    纵向加
    速度/(m•s−2
    符号 dr vr vx θ ax
    下载: 导出CSV

    表  3  多目标收益函数权重的学习结果

    Table  3.   Learning results of multi-objective payoff function weights

    收益函数维度 特征 权重
    安全性 $ {f}_{thwf} $ 0.15
    $ {f}_{thwr} $ 0.28
    效率性 $ {f}_{\text{v}} $ 0.42
    舒适性 $ {f}_{\text{jerk}} $ 0.15
    下载: 导出CSV

    表  4  实验配置表

    Table  4.   Experimental configuration table

    符合 描述 数值
    $ {L}_{\text{car}} $ 车辆长度/m 4.976
    $ {W}_{\text{car}} $ 车辆宽度/m 1.908
    $ {L}_{\text{lane}} $ 道路长度/m 640
    $ {W}_{\text{lane}} $ 道路宽度/m 3.75
    $ {v}_{\min } $ 最小行驶速度/(m•s−1 15
    $ {v}_{\max } $ 最大行驶速度/(m•s−1 36
    $ a $ 加速度/(m•s−2 0~5
    $ d $ 减速度/(m•s−2 0~5
    $ \delta $ 前轮转向角度/(°) −3~3
    下载: 导出CSV

    表  5  不同交通流密度下2种换道模型的事故发生数

    Table  5.   Number of accidents of two lane-changing models under different traffic flow densities

    交通流密度/(辆•km−1 MOBIL换道模型 博弈换道模型
    10 0 0
    20 0 0
    30 0 0
    40 0 0
    50 0 0
    60 1 0
    70 0 0
    80 2 0
    90 3 1
    100 1 0
    下载: 导出CSV
  • [1] 李升波, 陈晨, 方叙之, 等. 自动驾驶车辆的驾驶行为能力评估指标体系综述[J]. 中国公路学报, 2025, 38(1): 304-323. doi: 10.19721/j.cnki.1001-7372.2025.01.022

    LI Shengbo, CHEN Chen, FANG Xuzhi, et al. Review of indicator systems for driving behavioral ability evaluation of autonomous vehicles[J]. China Journal of Highway and Transport, 2025, 38(1): 304-323. doi: 10.19721/j.cnki.1001-7372.2025.01.022
    [2] 李珣, 程硕, 吴丹丹, 等. 车路协同下基于元胞自动机的精细交通流模型[J]. 西南交通大学学报, 2025, 60(1): 225-232. doi: 10.3969/j.issn.0258-2724.20220830

    LI Xun, CHENG Shuo, WU Dandan, et al. Refined traffic flow model based on cellular automaton under cooperative vehicle infrastructure system[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 225-232. doi: 10.3969/j.issn.0258-2724.20220830
    [3] 戴朝华, 杨帅, 叶圣永, 等. 供需双方博弈视角下的V2G优化策略[J]. 西南交通大学学报, 2025, 60(1): 166-174, 193. doi: 10.3969/j.issn.0258-2724.20230097

    DAI Chaohua, YANG Shuai, YE Shengyong, et al. Vehicle to grid optimization strategy from the perspective of supply and demand game[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 166-174,193. doi: 10.3969/j.issn.0258-2724.20230097
    [4] LOPEZ V G, LEWIS F L, LIU M S, et al. Game-theoretic lane-changing decision making and payoff learning for autonomous vehicles[J]. IEEE Transactions on Vehicular Technology, 2022, 71(4): 3609-3620. doi: 10.1109/TVT.2022.3148972
    [5] ZHENG Y, DING W T, RAN B, et al. Coordinated decisions of discretionary lane change between connected and automated vehicles on freeways: a game theory-based lane change strategy[J]. IET Intelligent Transport Systems, 2020, 14(13): 1864-1870. doi: 10.1049/iet-its.2020.0146
    [6] ARBIS D, DIXIT V V. Game theoretic model for lane changing: Incorporating conflict risks[J]. Accident Analysis & Prevention, 2019, 125: 158-164. doi: 10.1016/j.aap.2019.02.007
    [7] WANG M, HOOGENDOORN S P, DAAMEN W, et al. Game theoretic approach for predictive lane-changing and car-following control[J]. Transportation Research Part C: Emerging Technologies, 2015, 58: 73-92. doi: 10.1016/j.trc.2015.07.009
    [8] 张可琨, 曲大义, 宋慧, 等. 自动驾驶车辆换道博弈策略分析及建模[J]. 复杂系统与复杂性科学, 2023, 20(2): 60-67. doi: 10.13306/j.1672-3813.2023.02.008

    ZHANG Kekun, QU Dayi, SONG Hui, et al. Analysis and modeling for lane-changing game strategy of autonomous vehicles[J]. Complex Systems and Complexity Science, 2023, 20(2): 60-67. doi: 10.13306/j.1672-3813.2023.02.008
    [9] 孙曼曼, 陈珍萍, 李海峰, 等. 基于博弈论的网联自动驾驶车辆协同换道研究[J]. 计算机仿真, 2023, 40(1): 161-166, 207. doi: 10.3969/j.issn.1006-9348.2023.01.030

    SUN Manman, CHEN Zhenping, LI Haifeng, et al. Research on cooperative lane change of networked autonomous vehicles based on game theory[J]. Computer Simulation, 2023, 40(1): 161-166,207. doi: 10.3969/j.issn.1006-9348.2023.01.030
    [10] SMIRNOV N, LIU Y Z, VALIDI A, et al. A game theory-based approach for modeling autonomous vehicle behavior in congested, urban lane-changing scenarios[J]. Sensors (Basel, Switzerland), 2021, 21(4): 1523. doi: 10.3390/s21041523
    [11] CHEN W H, REN G, CAO Q, et al. A game-theory-based approach to modeling lane-changing interactions on highway on-ramps: considering the bounded rationality of drivers[J]. Mathematics, 2023, 11(2): 402. doi: 10.3390/math11020402
    [12] GUO J, HARMATI I. Lane-changing decision modelling in congested traffic with a game theory-based decomposition algorithm[J]. Engineering Applications of Artificial Intelligence, 2022, 107: 104530. doi: 10.1016/j.engappai.2021.104530
    [13] HANG P, LV C, HUANG C, et al. Cooperative decision making of lane-change for automated vehicles considering human-like driving characteristics[C]//2021 40th Chinese Control Conference (CCC). Shanghai: IEEE, 2021: 6106-6111.
    [14] 巴兴强, 刘娇娇. 基于博弈论的公交进站换道决策行为研究[J]. 重庆理工大学学报(自然科学), 2019, 33(2): 111-116. doi: 10.3969/j.issn.1674-8425(z).2019.02.019

    BA Xingqiang, LIU Jiaojiao. Research on decision making behavior of bus entering lane-changing based on game theory[J]. Journal of Chongqing University of Technology (Natural Science), 2019, 33(2): 111-116. doi: 10.3969/j.issn.1674-8425(z).2019.02.019
    [15] 梅生伟, 刘锋. 工程博弈论–工程优化决策中的博弈思想、原理及应用[J]. 控制理论与应用, 2024, 41(7): 1159-1171.

    MEI Shengwei, LIU Feng. Engineering game theory: motivations, principles, and applications in engineering decision-making problems[J]. Control Theory & Applications, 2024, 41(7): 1159-1171.
    [16] ZHAO F Q, WANG Q Y, WANG L. An inverse reinforcement learning framework with the Q-learning mechanism for the metaheuristic algorithm[J]. Knowledge-Based Systems, 2023, 265: 110368. doi: 10.1016/j.knosys.2023.110368
    [17] 高振海, 闫相同, 高菲. 基于逆向强化学习的纵向自动驾驶决策方法[J]. 汽车工程, 2022, 44(7): 969-975. doi: 10.19562/j.chinasae.qcgc.2022.07.003

    GAO Zhenhai, YAN Xiangtong, GAO Fei. A decision-making method for longitudinal autonomous driving based on inverse reinforcement learning[J]. Automotive Engineering, 2022, 44(7): 969-975. doi: 10.19562/j.chinasae.qcgc.2022.07.003
    [18] HUANG H, LIU J, SHI G, et al. Adaptive decision-making for autonomous vehicles: a learning-enhanced game-theoretic approach in interactive environments[EB/OL]. (2024-02-18). https://arxiv.org/abs/2402.11467.
    [19] EMUNA R, BOROWSKY A, BIESS A. Deep reinforcement learning for human-like driving policies in collision avoidance tasks of self-driving cars[EB/OL]. (2022-06-07). https://arxiv.org/abs/2006.04218
    [20] PHAN-MINH T, HOWINGTON F, CHU T S, et al. DriveIRL: drive in real life with inverse reinforcement learning[C]//2023 IEEE International Conference on Robotics and Automation (ICRA). London: IEEE, 2023: 1544-1550.
    [21] WANG L T, SUN L T, TOMIZUKA M, et al. Socially-compatible behavior design of autonomous vehicles with verification on real human data[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 3421-3428. doi: 10.1109/LRA.2021.3061350
    [22] NAUMANN M, SUN L T, ZHAN W, et al. Analyzing the suitability of cost functions for explaining and imitating human driving behavior based on inverse reinforcement learning[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). Paris: IEEE, 2020: 5481-5487.
    [23] XU D H, DING Z Z, HE X, et al. Learning from naturalistic driving data for human-like autonomous highway driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(12): 7341-7354. doi: 10.1109/tits.2020.3001131
    [24] YOU C X, LU J B, FILEV D, et al. Advanced planning for autonomous vehicles using reinforcement learning and deep inverse reinforcement learning[J]. Robotics and Autonomous Systems, 2019, 114: 1-18. doi: 10.1016/j.robot.2019.01.003
    [25] TAN S L, WANG Y N, VASILAKOS A V. Distributed population dynamics for searching generalized Nash equilibria of population games with graphical strategy interactions[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 52(5): 3263-3272. doi: 10.1109/tsmc.2021.3069059
    [26] ZHENG Y, DING W T, RAN B, et al. Coordinated decisions of discretionary lane change between connected and automated vehicles on freeways: a game theory-based lane change strategy[J]. IET Intelligent Transport Systems, 2020, 14(13): 1864-1870. doi: 10.1049/iet-its.2020.0146
    [27] JIA S, HUI F, WEI C, et al. Lane-changing behavior prediction based on game theory and deep learning[J]. Journal of Advanced Transportation, 2021, 2021(1): 6634960.
    [28] HUANG Z Y, WU J D, LV C. Driving behavior modeling using naturalistic human driving data with inverse reinforcement learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 10239-10251. doi: 10.1109/TITS.2021.3088935
    [29] KIM C, LANGARI R. Game theory based autonomous vehicles operation[J]. International Journal of Vehicle Design, 2014, 65(4): 360. doi: 10.1504/ijvd.2014.063832
    [30] 杨涛, 马玉琴, 刘梦, 等. 智能网联环境下信号交叉口车辆轨迹重构模型[J]. 西南交通大学学报, 2024, 59(5): 1148-1157. doi: 10.3969/j.issn.0258-2724.20220321

    YANG Tao, MA Yuqin, LIU Meng, et al. Vehicle trajectory reconstruction model of signalized intersection in connected automated environments[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1148-1157. doi: 10.3969/j.issn.0258-2724.20220321
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  10
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-03
  • 修回日期:  2025-07-17
  • 网络出版日期:  2026-01-28

目录

    /

    返回文章
    返回