Signal Noise Reduction Method of Ground-Penetrating Radar of Traditional Tibetan Architecture Based on Successive Variational Mode Decomposition
-
摘要:
藏式古建筑石砌体墙结构形式的特殊性和材料组成的复杂性,加之环境因素的干扰,使得墙体内隐蔽性损伤的精准检测面临巨大挑战. 针对传统方法在目标信号识别方面存在的局限性,应用逐次变分模态分解(SVMD)方法,实现探地雷达信号的高效分解与有效信号的精确提取. 通过探地雷达检测藏式石砌体墙体的试验数据,验证数值模拟结果的可靠性;随后系统分析有效波的传播特性,重点考察不同GPR天线中心频率、GPR离墙体间距以及裂缝宽度等因素对回波特性的影响规律;运用SVMD方法对信号进行分解及重构,分析此方法在不同噪声水平和裂缝宽度下的稳定性,目标信号识别方面的适用范围及相比于现有技术的优势. 结果表明:SVMD方法首次应用于藏式古建筑石砌体墙的GPR信号降噪处,在特定条件下,相较于EMD和VMD方法,其信噪比可分别提升58.36%和18.67%,并能够有效分离目标信号、背景墙信号和噪声信号,为藏式古建筑墙体损伤特征的准确提取提供了可靠的技术支持.
Abstract:Due to the unique structural form of stone masonry walls in traditional Tibetan architecture, the complexity of the material composition, and the interference of environmental factors, the accurate detection of hidden damage in the wall is extremely challenging. To address the limitations of traditional methods in target signal identification, experimental data obtained from ground-penetrating radar (GPR) testing of Tibetan stone masonry walls were used to verify the reliability of the numerical simulation results. Then, the propagation characteristics of the effective wave were systematically analyzed, with the focus on the effects of different GPR antenna center frequencies, GPR spacing from the wall, and crack width on the echo characteristics. Finally, the successive variational mode decomposition (SVMD) method was applied for signal decomposition and reconstruction. Its stability, applicability in target signal identification, and its advantages over existing techniques were evaluated across varying noise levels and crack widths. The results have shown that when the SVMD method is applied to the noise reduction of GPR signals in masonry walls of traditional Tibetan architecture under specific conditions, it improves the signal-to-noise ratio by 58.36% and 18.67% compared to the empirical mode decomposition (EMD) and variational mode decomposition (VMD) methods, respectively. It can effectively separate the target signals, background wall signals, and noise signals, providing reliable technical support for extracting damage characteristics in masonry walls of traditional Tibetan architecture.
-
表 1 探地雷达参数表
Table 1. Parameters of GPR
中心频
率/MHz波速/
(m·ns−1)采样时
窗/ns采样点
数/点道间
距/mm介电
常数1700 0.10 10 512 5 4 表 2 模型材料参数及厚度参数
Table 2. Material and thickness parameters of model
材料 介电常数 电导率 磁导率 宽度/mm 黄泥 3 0 0.100 50 花岗岩 5 0 0.001 175 空气 1.000 0 1.000 20~45 相关系数 相关性程度 0.8≤ $ \left| P \right| $<1.0 极度相关 0.6≤ $ \left| P \right| $<0.8 高度相关 0.4≤ $ \left| P \right| $<0.6 中度相关 0.2≤ $ \left| P \right| $<0.4 弱相关 0< $ \left| P \right| $<0.2 几乎无关 表 4 不同方法降噪效果比较
Table 4. Comparison of noise reduction effects of different methods
高斯白噪声/dB EMD VMD SVMD −10 −9.77 −9.79 3.23 −8 −7.80 −7.78 6.01 −6 −5.85 −5.76 7.27 −4 −3.92 −3.75 7.81 −2 −2.03 −1.74 10.06 2 1.57 2.29 13.53 4 3.22 4.30 15.14 6 4.73 6.31 16.76 8 6.06 8.29 18.36 10 7.18 10.23 18.55 表 5 不同裂缝宽度的电磁波特征
Table 5. Electromagnetic wave characteristics of different crack widths
dB 高斯白噪声/dB 裂缝宽度/mm 20 22 25 27 30 32 37 40 42 45 −10 4.75 4.15 5.65 4.80 3.30 2.55 1.71 1.95 1.36 1.86 −8 8.15 5.20 5.36 6.65 6.05 5.15 3.66 4.01 3.51 3.80 −6 9.01 8.90 9.01 7.80 7.30 5.65 5.15 4.01 5.55 5.76 −4 10.40 10.36 10.36 10.15 7.85 8.51 7.61 7.75 7.61 7.75 −2 12.85 12.80 11.40 11.71 10.10 10.45 9.46 9.46 9.50 7.26 2 14.25 14.41 13.35 13.85 13.55 14.75 13.01 13.25 12.00 12.85 4 15.45 14.41 16.50 14.20 15.15 15.45 14.50 14.75 14.95 14.45 6 15.70 18.46 17.95 14.70 16.80 16.45 15.85 16.05 16.75 15.65 8 16.40 19.30 16.15 17.75 18.40 17.90 16.95 17.20 18.35 16.55 10 18.55 20.10 20.23 18.50 18.60 18.80 17.85 18.46 19.75 18.60 -
[1] 蒋宇洪. 藏式三叶粗料石砌体力学性能试验及数值模拟研究[D]. 北京: 北京交通大学, 2023. [2] 武奥军. 藏式古建石砌体抗压静力性能研究[D]. 北京: 北京交通大学, 2021. [3] DILIXIATI D, YANG N, CHANG P. Feasibility of application of Non-Destructive Testing (NDT) methods to detect hidden damage in masonry structures[J]. Smart Construction, 2024, 1(2): 0008. [4] 田旭园, 汤一平, 杨燕萍. 红外图像处理在墙体空鼓检测上的应用研究[J]. 计算机测量与控制, 2012, 20(6): 1501-1503TIAN Xuyuan, TANG Yiping, YANG Yanping. Application on detection of the wall hollow using infrared image processing technology[J]. Computer Measurement & Control, 2012, 20(6): 1501-1503. [5] 孟田华, 唐佳玥, 王浩航, 等. 超声波无损探测在得胜堡长城病害检测及修复中的应用[J]. 工程勘察, 2023, 51(11): 74-80.MENG Tianhua, TANG Jiayue, WANG Haohang, et al. Application of ultrasonic nondestructive detection in disease detection and restoration of the Deshengbao Great Wall[J]. Geotechnical Investigation & Surveying, 2023, 51(11): 74-80. [6] 杨浩, 邹杰, 程丹丹, 等. 探地雷达在临海市古长城内部结构检测中的应用分析[J]. 物探与化探, 2024, 48(6): 1741-1746.YANG Hao, ZOU Jie, CHENG Dandan, et al. Application of ground-penetrating radar in detecting the internal structures of the ancient Great Wall in Linhai City[J]. Geophysical and Geochemical Exploration, 2024, 48(6): 1741-1746. [7] 刘震, 顾兴宇, 李骏, 等. 探地雷达数值模拟与道路裂缝图像检测的深度学习增强方法[J]. 地球物理学报, 2016, 51(1): 8-13.LIU Zhen, GU Xingyu, LI Jun, et al. Deep learning-enhanced numerical simulation ground penetrating radar and image detection of road cracks[J]. Chinese Journal of Geophysics, 2024, 67(6): 2455-2471. [8] 廖红建, 朱庆女, 昝月稳, 等. 基于探地雷达的高铁无砟轨道结构层病害检测[J]. 西南交通大学学报, 2016, 51(1): 8-13.LIAO Hongjian, ZHU Qingnü, ZAN Yuewen, et al. Detection of ballastless track diseases in high-speed railway based on ground penetrating radar[J]. Journal of Southwest Jiaotong University, 2016, 51(1): 8-13. [9] SHI X X, YANG Q F. Suppressing the direct wave noise in GPR data via the 2-D physical wavelet frame[C]//Proceedings 2011 International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE). Changchun: IEEE, 2011: 1161-1164. [10] 张挺. 小波联合去噪法在探地雷达信号中的应用研究[D]. 西安: 长安大学, 2012. [11] LIU C, SONG C, LU Q. Random noise de-noising and direct wave eliminating based on SVD method for ground penetrating radar signals[J]. Journal of Applied Geophysics, 2017, 144: 125-133. [12] CHENG Q, CUI F, CHEN B P, et al. Attenuation of non-stationary random noise in ground penetrating radar data based on time-varying filtering[J]. Measurement, 2024, 236: 115169. [13] LIU W, YANG N, BAI F, et al. An improved automated framework for operational modal analysis with multi-stage clustering and modal quality evaluation[J]. Mechanical Systems and Signal Processing, 2024, 212: 111235. [14] 冯德山, 戴前伟, 余凯. 基于经验模态分解的低信噪比探地雷达数据处理[J]. 中南大学学报(自然科学版), 2012, 43(2): 596-604.FENG Deshan, DAI Qianwei, YU Kai. GPR signal processing under low SNR based on empirical mode decomposition[J]. Journal of Central South University (Science and Technology), 2012, 43(2): 596-604. [15] KEVRIC J, SUBASI A. Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system[J]. Biomedical Signal Processing and Control, 2017, 31: 398-406. [16] ZHANG X, MIAO Q, ZHANG H, et al. A parameter-adaptive VMD method based on grasshopper optimization algorithm to analyze vibration signals from rotating machinery[J]. Mechanical Systems and Signal Processing, 2018, 108: 58-72. doi: 10.1016/j.ymssp.2017.11.029 [17] NAZARI M, SAKHAEI S M. Successive variational mode decomposition[J]. Signal Processing, 2020, 174: 107610. doi: 10.1016/j.sigpro.2020.107610 [18] 滕东宇, 杨娜. 藏式石砌体受压应力-应变全曲线特征研究[J]. 工程力学, 2018, 35(11): 172-180.TENG Dongyu, YANG Na. Research on the features of complete stress-strain curves of Tibetan-style stone masonry under compressive load[J]. Engineering Mechanics, 2018, 35(11): 172-180. [19] 李康宁. 藏式古建石砌体墙基本力学特性研究[D]. 北京: 北京交通大学, 2019. [20] 杨娜, 滕东宇. 藏式石砌体在剪-压复合作用下抗剪性能研究[J]. 工程力学, 2020, 37(2): 221-229.YANG Na, TENG Dongyu. Shear performance of Tibetan stone masonry under shear-compression loading[J]. Engineering Mechanics, 2020, 37(2): 221-229. [21] 陆正超. 基于探地雷达数据分析的藏式石墙内部残损及异常物辨识研究[D]. 北京: 北京交通大学, 2020. [22] 余文华, 彭仲秋, 任朗. 探地雷达的时域有限差分模型[J]. 西南交通大学学报, 1995, 30(2): 145-150.YU Wenhua, PENG Zhongqiu, REN Lang. Finite difference time domain model of ground penetrating radar[J]. Journal of Southwest Jiaotong University, 1995, 30(2): 145-150. [23] WARREN C, GIANNOPOULOS A, GIANNAKIS I. gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar[J]. Computer Physics Communications, 2016, 209: 163-170. doi: 10.1016/j.cpc.2016.08.020 [24] LI R H, ZHANG H Y, CHEN Z, et al. Denoising method of ground-penetrating radar signal based on independent component analysis with multifractal spectrum[J]. Measurement, 2022, 192: 110886. doi: 10.1016/j.measurement.2022.110886 [25] SCHOBER P, BOER C, SCHWARTE L A. Correlation coefficients: appropriate use and interpretation[J]. Anesthesia and Analgesia, 2018, 126(5): 1763-1768. doi: 10.1213/ANE.0000000000002864 -
下载: