• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于SVMD的藏式古建筑探地雷达信号降噪处理方法

迪力达尔•迪力夏提 杨娜 常鹏 白凡

迪力达尔•迪力夏提, 杨娜, 常鹏, 白凡. 基于SVMD的藏式古建筑探地雷达信号降噪处理方法[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20250142
引用本文: 迪力达尔•迪力夏提, 杨娜, 常鹏, 白凡. 基于SVMD的藏式古建筑探地雷达信号降噪处理方法[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20250142
DILIDAER Dilixiati, YANG Na, CHANG Peng, BAI Fan. Signal Noise Reduction Method of Ground-Penetrating Radar of Traditional Tibetan Architecture Based on Successive Variational Mode Decomposition[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20250142
Citation: DILIDAER Dilixiati, YANG Na, CHANG Peng, BAI Fan. Signal Noise Reduction Method of Ground-Penetrating Radar of Traditional Tibetan Architecture Based on Successive Variational Mode Decomposition[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20250142

基于SVMD的藏式古建筑探地雷达信号降噪处理方法

doi: 10.3969/j.issn.0258-2724.20250142
基金项目: 国家自然科学基金项目(52478119)
详细信息
    作者简介:

    迪力达尔•迪力夏提(1995—),女,博士研究生,研究方向为中国古建筑结构健康监测研究,E-mail:dildar_2021@foxmail.com

    通讯作者:

    杨娜(1974—),女,教授,博士,研究方向为钢-木结构与结构健康监测,E-mail:nyang@bjtu.edu.cn

  • 中图分类号: TU363;P631.3

Signal Noise Reduction Method of Ground-Penetrating Radar of Traditional Tibetan Architecture Based on Successive Variational Mode Decomposition

  • 摘要:

    藏式古建筑石砌体墙结构形式的特殊性和材料组成的复杂性,加之环境因素的干扰,使得墙体内隐蔽性损伤的精准检测面临巨大挑战. 针对传统方法在目标信号识别方面存在的局限性,应用逐次变分模态分解(SVMD)方法,实现探地雷达信号的高效分解与有效信号的精确提取. 通过探地雷达检测藏式石砌体墙体的试验数据,验证数值模拟结果的可靠性;随后系统分析有效波的传播特性,重点考察不同GPR天线中心频率、GPR离墙体间距以及裂缝宽度等因素对回波特性的影响规律;运用SVMD方法对信号进行分解及重构,分析此方法在不同噪声水平和裂缝宽度下的稳定性,目标信号识别方面的适用范围及相比于现有技术的优势. 结果表明:SVMD方法首次应用于藏式古建筑石砌体墙的GPR信号降噪处,在特定条件下,相较于EMD和VMD方法,其信噪比可分别提升58.36%和18.67%,并能够有效分离目标信号、背景墙信号和噪声信号,为藏式古建筑墙体损伤特征的准确提取提供了可靠的技术支持.

     

  • 图 1  藏式三叶墙构造及常见的损伤类型

    Figure 1.  Tibetan three-leaf wall construction and common types of damage

    图 2  墙体内部裂缝埋置图及墙体厚度方向说明

    Figure 2.  Embedded cracks inside the wall and illustration of wall thickness direction

    图 3  电磁波在介质中传播示意

    Figure 3.  Electromagnetic wave propagation in media

    图 4  试验值和模拟值对比

    Figure 4.  Comparison of test and simulated values

    图 5  不同中心频率下的电磁波

    Figure 5.  Electromagnetic waves at different center frequencies

    图 6  不同中心频率反射波波形特性

    Figure 6.  Characteristics of reflected waves with different center frequencies

    图 7  不同检测高度下电磁波特性

    Figure 7.  Electromagnetic wave characteristics at different detection heights

    图 8  不同裂缝宽度的电磁波特征

    Figure 8.  Electromagnetic wave characteristics of different crack widths

    图 9  基于SVMD电磁波的分解结果(高斯白噪声为2 dB)

    Figure 9.  Decomposition results based on SVMD electromagnetic waves (Gaussian white noise is 2 dB)

    图 10  原始信号与重构信号相关性(裂缝宽度为45 mm)

    Figure 10.  Correlation between original and reconstructed signals (Crack width is 45 mm)

    表  1  探地雷达参数表

    Table  1.   Parameters of GPR

    中心频
    率/MHz
    波速/
    (m·ns−1
    采样时
    窗/ns
    采样点
    数/点
    道间
    距/mm
    介电
    常数
    1700 0.10 10 512 5 4
    下载: 导出CSV

    表  2  模型材料参数及厚度参数

    Table  2.   Material and thickness parameters of model

    材料 介电常数 电导率 磁导率 宽度/mm
    黄泥 3 0 0.100 50
    花岗岩 5 0 0.001 175
    空气 1.000 0 1.000 20~45
    下载: 导出CSV

    表  3  相关性程度的度量标准[25]

    Table  3.   Measure of correlation [25]

    相关系数 相关性程度
    0.8≤ $ \left| P \right| $<1.0 极度相关
    0.6≤ $ \left| P \right| $<0.8 高度相关
    0.4≤ $ \left| P \right| $<0.6 中度相关
    0.2≤ $ \left| P \right| $<0.4 弱相关
    0< $ \left| P \right| $<0.2 几乎无关
    下载: 导出CSV

    表  4  不同方法降噪效果比较

    Table  4.   Comparison of noise reduction effects of different methods

    高斯白噪声/dB EMD VMD SVMD
    −10 −9.77 −9.79 3.23
    −8 −7.80 −7.78 6.01
    −6 −5.85 −5.76 7.27
    −4 −3.92 −3.75 7.81
    −2 −2.03 −1.74 10.06
    2 1.57 2.29 13.53
    4 3.22 4.30 15.14
    6 4.73 6.31 16.76
    8 6.06 8.29 18.36
    10 7.18 10.23 18.55
    下载: 导出CSV

    表  5  不同裂缝宽度的电磁波特征

    Table  5.   Electromagnetic wave characteristics of different crack widths dB

    高斯白噪声/dB
    裂缝宽度/mm
    20 22 25 27 30 32 37 40 42 45
    −10 4.75 4.15 5.65 4.80 3.30 2.55 1.71 1.95 1.36 1.86
    −8 8.15 5.20 5.36 6.65 6.05 5.15 3.66 4.01 3.51 3.80
    −6 9.01 8.90 9.01 7.80 7.30 5.65 5.15 4.01 5.55 5.76
    −4 10.40 10.36 10.36 10.15 7.85 8.51 7.61 7.75 7.61 7.75
    −2 12.85 12.80 11.40 11.71 10.10 10.45 9.46 9.46 9.50 7.26
    2 14.25 14.41 13.35 13.85 13.55 14.75 13.01 13.25 12.00 12.85
    4 15.45 14.41 16.50 14.20 15.15 15.45 14.50 14.75 14.95 14.45
    6 15.70 18.46 17.95 14.70 16.80 16.45 15.85 16.05 16.75 15.65
    8 16.40 19.30 16.15 17.75 18.40 17.90 16.95 17.20 18.35 16.55
    10 18.55 20.10 20.23 18.50 18.60 18.80 17.85 18.46 19.75 18.60
    下载: 导出CSV
  • [1] 蒋宇洪. 藏式三叶粗料石砌体力学性能试验及数值模拟研究[D]. 北京: 北京交通大学, 2023.
    [2] 武奥军. 藏式古建石砌体抗压静力性能研究[D]. 北京: 北京交通大学, 2021.
    [3] DILIXIATI D, YANG N, CHANG P. Feasibility of application of Non-Destructive Testing (NDT) methods to detect hidden damage in masonry structures[J]. Smart Construction, 2024, 1(2): 0008.
    [4] 田旭园, 汤一平, 杨燕萍. 红外图像处理在墙体空鼓检测上的应用研究[J]. 计算机测量与控制, 2012, 20(6): 1501-1503

    TIAN Xuyuan, TANG Yiping, YANG Yanping. Application on detection of the wall hollow using infrared image processing technology[J]. Computer Measurement & Control, 2012, 20(6): 1501-1503.
    [5] 孟田华, 唐佳玥, 王浩航, 等. 超声波无损探测在得胜堡长城病害检测及修复中的应用[J]. 工程勘察, 2023, 51(11): 74-80.

    MENG Tianhua, TANG Jiayue, WANG Haohang, et al. Application of ultrasonic nondestructive detection in disease detection and restoration of the Deshengbao Great Wall[J]. Geotechnical Investigation & Surveying, 2023, 51(11): 74-80.
    [6] 杨浩, 邹杰, 程丹丹, 等. 探地雷达在临海市古长城内部结构检测中的应用分析[J]. 物探与化探, 2024, 48(6): 1741-1746.

    YANG Hao, ZOU Jie, CHENG Dandan, et al. Application of ground-penetrating radar in detecting the internal structures of the ancient Great Wall in Linhai City[J]. Geophysical and Geochemical Exploration, 2024, 48(6): 1741-1746.
    [7] 刘震, 顾兴宇, 李骏, 等. 探地雷达数值模拟与道路裂缝图像检测的深度学习增强方法[J]. 地球物理学报, 2016, 51(1): 8-13.

    LIU Zhen, GU Xingyu, LI Jun, et al. Deep learning-enhanced numerical simulation ground penetrating radar and image detection of road cracks[J]. Chinese Journal of Geophysics, 2024, 67(6): 2455-2471.
    [8] 廖红建, 朱庆女, 昝月稳, 等. 基于探地雷达的高铁无砟轨道结构层病害检测[J]. 西南交通大学学报, 2016, 51(1): 8-13.

    LIAO Hongjian, ZHU Qingnü, ZAN Yuewen, et al. Detection of ballastless track diseases in high-speed railway based on ground penetrating radar[J]. Journal of Southwest Jiaotong University, 2016, 51(1): 8-13.
    [9] SHI X X, YANG Q F. Suppressing the direct wave noise in GPR data via the 2-D physical wavelet frame[C]//Proceedings 2011 International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE). Changchun: IEEE, 2011: 1161-1164.
    [10] 张挺. 小波联合去噪法在探地雷达信号中的应用研究[D]. 西安: 长安大学, 2012.
    [11] LIU C, SONG C, LU Q. Random noise de-noising and direct wave eliminating based on SVD method for ground penetrating radar signals[J]. Journal of Applied Geophysics, 2017, 144: 125-133.
    [12] CHENG Q, CUI F, CHEN B P, et al. Attenuation of non-stationary random noise in ground penetrating radar data based on time-varying filtering[J]. Measurement, 2024, 236: 115169.
    [13] LIU W, YANG N, BAI F, et al. An improved automated framework for operational modal analysis with multi-stage clustering and modal quality evaluation[J]. Mechanical Systems and Signal Processing, 2024, 212: 111235.
    [14] 冯德山, 戴前伟, 余凯. 基于经验模态分解的低信噪比探地雷达数据处理[J]. 中南大学学报(自然科学版), 2012, 43(2): 596-604.

    FENG Deshan, DAI Qianwei, YU Kai. GPR signal processing under low SNR based on empirical mode decomposition[J]. Journal of Central South University (Science and Technology), 2012, 43(2): 596-604.
    [15] KEVRIC J, SUBASI A. Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system[J]. Biomedical Signal Processing and Control, 2017, 31: 398-406.
    [16] ZHANG X, MIAO Q, ZHANG H, et al. A parameter-adaptive VMD method based on grasshopper optimization algorithm to analyze vibration signals from rotating machinery[J]. Mechanical Systems and Signal Processing, 2018, 108: 58-72. doi: 10.1016/j.ymssp.2017.11.029
    [17] NAZARI M, SAKHAEI S M. Successive variational mode decomposition[J]. Signal Processing, 2020, 174: 107610. doi: 10.1016/j.sigpro.2020.107610
    [18] 滕东宇, 杨娜. 藏式石砌体受压应力-应变全曲线特征研究[J]. 工程力学, 2018, 35(11): 172-180.

    TENG Dongyu, YANG Na. Research on the features of complete stress-strain curves of Tibetan-style stone masonry under compressive load[J]. Engineering Mechanics, 2018, 35(11): 172-180.
    [19] 李康宁. 藏式古建石砌体墙基本力学特性研究[D]. 北京: 北京交通大学, 2019.
    [20] 杨娜, 滕东宇. 藏式石砌体在剪-压复合作用下抗剪性能研究[J]. 工程力学, 2020, 37(2): 221-229.

    YANG Na, TENG Dongyu. Shear performance of Tibetan stone masonry under shear-compression loading[J]. Engineering Mechanics, 2020, 37(2): 221-229.
    [21] 陆正超. 基于探地雷达数据分析的藏式石墙内部残损及异常物辨识研究[D]. 北京: 北京交通大学, 2020.
    [22] 余文华, 彭仲秋, 任朗. 探地雷达的时域有限差分模型[J]. 西南交通大学学报, 1995, 30(2): 145-150.

    YU Wenhua, PENG Zhongqiu, REN Lang. Finite difference time domain model of ground penetrating radar[J]. Journal of Southwest Jiaotong University, 1995, 30(2): 145-150.
    [23] WARREN C, GIANNOPOULOS A, GIANNAKIS I. gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar[J]. Computer Physics Communications, 2016, 209: 163-170. doi: 10.1016/j.cpc.2016.08.020
    [24] LI R H, ZHANG H Y, CHEN Z, et al. Denoising method of ground-penetrating radar signal based on independent component analysis with multifractal spectrum[J]. Measurement, 2022, 192: 110886. doi: 10.1016/j.measurement.2022.110886
    [25] SCHOBER P, BOER C, SCHWARTE L A. Correlation coefficients: appropriate use and interpretation[J]. Anesthesia and Analgesia, 2018, 126(5): 1763-1768. doi: 10.1213/ANE.0000000000002864
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  17
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-28
  • 修回日期:  2025-09-07
  • 网络出版日期:  2025-11-27

目录

    /

    返回文章
    返回