• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于计算机视觉和深度学习的古桥裂缝识别方法

朱前坤 谢辰辉 张琼 杜永峰

朱前坤, 谢辰辉, 张琼, 杜永峰. 基于计算机视觉和深度学习的古桥裂缝识别方法[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20250134
引用本文: 朱前坤, 谢辰辉, 张琼, 杜永峰. 基于计算机视觉和深度学习的古桥裂缝识别方法[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20250134
ZHU Qiankun, XIE Chenhui, ZHANG Qiong, DU Yongfeng. Method for Crack Detection of Ancient Bridges Based on Computer Vision and Deep Learning[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20250134
Citation: ZHU Qiankun, XIE Chenhui, ZHANG Qiong, DU Yongfeng. Method for Crack Detection of Ancient Bridges Based on Computer Vision and Deep Learning[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20250134

基于计算机视觉和深度学习的古桥裂缝识别方法

doi: 10.3969/j.issn.0258-2724.20250134
基金项目: 国家自然科学基金项目(52168041);甘肃省重点研发计划资助项目(22YF11GA301)
详细信息
    作者简介:

    朱前坤(1981—),男,教授,博导,研究方向为结构健康监测,E-mail:zhuqklut@qq.com

  • 中图分类号: U446.3

Method for Crack Detection of Ancient Bridges Based on Computer Vision and Deep Learning

  • 摘要:

    为提升古桥裂缝检测的精度与效率,解决传统传感器检测方法易导致信息缺失及二次损伤的问题,本文提出一种基于改进YOLO11与SegFormer的裂缝识别与测量方法. 首先,针对YOLO11模型参数量大、推理速度受限的缺陷,提出YOLO-CD(you only look once-crack detect)目标检测模型:通过StarNet轻量化主干网络降低计算成本,结合HSANet颈部网络增强裂缝边缘细节保留能力,并设计优化空间上下文(optimized spatial context detection head,OSCD)检测头优化多尺度检测效率;其次,提出改进的SegFormer-HF语义分割模型,通过特征融合模块(FFM)与高低频分解块(HLFDB)抑制下采样信息丢失,提升裂缝分割的语义一致性;最后,提出先检测后分割的联合方案,结合骨架线算法实现裂缝长度与宽度的自动化计算. 基于研究获取的古桥裂缝数据集进行实验,结果表明:YOLO-CD模型的F1分数、mAP50与mAP50-95分别为67.8%、71.5%与46.4%,浮点运算量(GFLOPs)较YOLO11降低了47.6%;SegFormer-HF的F1分数、mIoU与mPA分别为91.50%、90.51%与85.15%,优于现有的主流模型. 研究证明了该方法在兼顾检测速度与精度的情况下,模型更小、检测效率更高,可适合部署于摄像头和无人机等移动设备.

     

  • 图 1  YOLO-CD网络结构

    Figure 1.  YOLO-CD network structure

    图 2  StarNet架构概览

    Figure 2.  StarNet architecture overview

    图 3  HSANet网络结构

    Figure 3.  HSANet network structure

    图 4  SegFormer网络结构

    Figure 4.  SegFormer network structure

    图 5  FFM结构示意

    Figure 5.  FFM structure

    图 6  HLFDB结构示意

    Figure 6.  HLFDB structure

    图 7  部分典型裂缝图片

    Figure 7.  Some typical crack images

    图 8  YOLO-CD检测结果示意

    Figure 8.  YOLO-CD detection results

    图 9  SegFormer-HF检测结果示意

    Figure 9.  SegFormer-HF detection results

    图 10  基于裂缝骨架线的裂缝特征计算示意

    Figure 10.  Crack feature calculation based on crack skeleton line

    图 11  裂缝实际尺寸验算示意

    Figure 11.  Actual size verification of cracks

    表  1  各数据集占比情况

    Table  1.   Percentage of datasets %

    数据集 自建 Crack500 Crack-seg
    crack-detect 72 10 18
    crack-mask 59 16 25
    下载: 导出CSV

    表  2  消融实验结果

    Table  2.   Results of ablation experiments

    模型 ZF1 ZmAP50 ZmAP50-95 ZGFLOPs
    YOLO11 0.644 0.686 0.446 6.3
    Starnet 0.651 0.685 0.445 5.0
    HSANet 0.660 0.687 0.444 5.3
    OSCD 0.680 0.724 0.488 5.7
    Starnet + HSANet 0.658 0.679 0.435 3.9
    HSANet + OSCD 0.670 0.713 0.472 4.6
    YOLO-CD 0.678 0.715 0.464 3.3
    下载: 导出CSV

    表  3  对比实验结果

    Table  3.   Comparative experimental results

    模型 ZF1 ZmAP50 ZmAP50-95 ZGFLOPs
    YOLO11 0.644 0.686 0.446 6.3
    YOLOv5 0.652 0.661 0.401 4.1
    YOLOv8 0.638 0.667 0.434 8.1
    YOLO-CD 0.678 0.715 0.464 3.3
    下载: 导出CSV

    表  4  消融实验结果

    Table  4.   Results of ablation experiments %

    模型 ZmIou ZmPA ZF1
    SegFormer_B0 84.08 89.52 90.49
    FFM 84.80 89.99 91.20
    HLFDB 84.61 89.81 91.12
    SegFormer-HF 85.15 90.51 91.50
    下载: 导出CSV

    表  5  对比实验结果

    Table  5.   Comparative experimental results %

    模型 ZmIou ZmPA ZF1
    Segformer_B0 84.08 89.52 90.49
    Deeplabelv3 + 83.52 88.75 90.05
    Unet 83.78 88.86 90.45
    PSPnet 83.93 89.24 89.85
    Segformer-HF 85.15 90.51 91.50
    下载: 导出CSV

    表  6  模型泛化实验结果

    Table  6.   Experimental results of model generalization

    数据集 YOLO-CD SegFormer-HF
    ZF1 ZmAP50 ZmAP50-95 ZGFLOPs ZmIOU/% ZmPA/% ZF1/%
    CrackDetect 0.661 0.705 0.455 3.3 84.22 89.78 90.67
    DeepCrack 0.654 0.696 0.448 3.3 84.03 89.35 90.12
    下载: 导出CSV

    表  7  裂缝长度与宽度计算结果

    Table  7.   Calculation results of length and width of cracks

    编号 长度测量 宽度测量
    像素长度/px 实际长度/mm 人工测量/mm 绝对误差/mm 相对误差/% 像素宽度/px 实际宽度/mm 人工测量/mm 绝对误差/mm 相对误差/%
    1892.73 327.82 317.50 10.32 3.25 129.10 22.36 21.50 0.86 4.00
    4322.11 748.59 766.75 18.16 2.37 14.03 2.43 2.25 0.18 8.00
    3484.76 603.56 612.80 9.24 1.51 155.49 26.93 26.35 0.58 2.20
    3658.84 633.71 653.40 19.69 3.01 82.91 14.36 13.75 0.21 4.44
    注:尺度因子为0.1732.
    下载: 导出CSV
  • [1] 韩晓健, 赵志成. 基于计算机视觉技术的结构表面裂缝检测方法研究[J]. 建筑结构学报, 2018, 39(增1): 418-427.

    HAN Xiaojian, ZHAO Zhicheng. Structural surface crack detection method based on computer vision technology[J]. Journal of Building Structures, 2018, 39(S1): 418-427.
    [2] 谢明志, 樊丁萌, 蒋志鹏, 等. 基于计算机视觉的混凝土结构裂缝检测研究现状与展望[J/OL]. 西南交通大学学报, 1-20[2025-08-17]. https://link.cnki.net/urlid/51.1277.u.20240913.1853.002.
    [3] 杨国俊, 齐亚辉, 石秀名. 基于数字图像技术的桥梁裂缝检测综述[J]. 吉林大学学报(工学版), 2024, 54(2): 313-332.

    YANG Guojun, QI Yahui, SHI Xiuming. Review of bridge crack detection based on digital image technology[J]. Journal of Jilin University (Engineering and Technology Edition), 2024, 54(2): 313-332.
    [4] 唐钱龙, 谭园, 彭立敏, 等. 基于数字图像技术的隧道衬砌裂缝识别方法研究[J]. 铁道科学与工程学报, 2019, 16(12): 3041-3049.

    TANG Qianlong, TAN Yuan, PENG Limin, et al. On crack identification method for tunnel linings based on digital image technology[J]. Journal of Railway Science and Engineering, 2019, 16(12): 3041-3049.
    [5] 刘宇飞, 樊健生, 聂建国, 等. 结构表面裂缝数字图像法识别研究综述与前景展望[J]. 土木工程学报, 2021, 54(6): 79-98.

    LIU Yufei, FAN Jiansheng, NIE Jianguo, et al. Review and prospect of digital-image-based crack detection of structure surface[J]. China Civil Engineering Journal, 2021, 54(6): 79-98.
    [6] 杨军, 高志明, 李金泰, 等. 基于注意力机制的三维点云模型对应关系计算[J]. 西南交通大学学报, 2024, 59(5): 1184-1193.

    YANG Jun, GAO Zhiming, LI Jintai, et al. Correspondence calculation of three-dimensional point cloud model based on attention mechanism[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1184-1193.
    [7] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
    [8] 周中, 闫龙宾, 张俊杰, 等. 基于YOLOX-G算法的隧道裂缝实时检测[J]. 铁道科学与工程学报, 2023, 20(7): 2751-2762.

    ZHOU Zhong, YAN Longbin, ZHANG Junjie, et al. Real-time detection of tunnel cracks based on YOLOX-G algorithm[J]. Journal of Railway Science and Engineering, 2023, 20(7): 2751-2762.
    [9] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Computer Vision – ECCV 2018. Cham: Springer, 2018: 833-851.
    [10] 王青原, 许颖, 钱胜. 基于机器视觉和数字图像相关技术的混凝土损伤演化研究[J]. 湖南大学学报(自然科学版), 2023, 50(11): 169-180.

    WANG Qingyuan, XU Ying, QIAN Sheng. Study on damage evolution of concrete specimens based on machine vision and digital image correlation technology[J]. Journal of Hunan University (Natural Sciences), 2023, 50(11): 169-180.
    [11] 王耀东, 朱力强, 余祖俊, 等. 基于样本自动标注的隧道裂缝病害智能识别[J]. 西南交通大学学报, 2023, 58(5): 1001-1008, 1036.

    WANG Yaodong, ZHU Liqiang, YU Zujun, et al. Intelligent tunnel crack recognition based on automatic sample labeling[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1001-1008, 1036.
    [12] NISHIYAMA S, MINAKATA N, KIKUCHI T, et al. Improved digital photogrammetry technique for crack monitoring[J]. Advanced Engineering Informatics, 2015, 29(4): 851-858. doi: 10.1016/j.aei.2015.05.005
    [13] LI Z, ZHANG T, MIAO Y, et al. Automated quantification of crack length and width in asphalt pavements[J]. Computer-Aided Civil and Infrastructure Engineering, 2024, 39(21): 3317-3336. doi: 10.1111/mice.13344
    [14] 周颖, 刘彤. 基于计算机视觉的混凝土裂缝识别[J]. 同济大学学报(自然科学版), 2019, 47(9): 1277-1285.

    ZHOU Ying, LIU Tong. Computer vision-based crack detection and measurement on concrete structure[J]. Journal of Tongji University (Natural Science), 2019, 47(9): 1277-1285.
    [15] 陈善继, 刘天禹, 刘鹏宇, 等. 基于计算机视觉的公路边坡裂缝监测方法[J]. 北京工业大学学报, 2024, 50(6): 702-710.

    CHEN Shanji, LIU Tianyu, LIU Pengyu, et al. Computer vision-based method for monitoring road slope cracks[J]. Journal of Beijing University of Technology, 2024, 50(6): 702-710.
    [16] 王卫东, 吴铮, 邱实, 等. 基于多目标级联深度学习的无砟轨道板表面裂缝测量[J]. 铁道科学与工程学报, 2023, 20(9): 3592-3603.

    WANG Weidong, WU Zheng, QIU Shi, et al. Multi-objective cascade deep learning based crack measurement for ballastless track slab[J]. Journal of Railway Science and Engineering, 2023, 20(9): 3592-3603.
    [17] KHANAM R, HUSSAIN M. Yolov11: An overview of the key architectural enhancements[EB/OL]. (2023-10-23)[2025-07-12]. https://arxiv.org/abs/2410.17725.
    [18] VARGHESE R, M S. YOLOv8: a novel object detection algorithm with enhanced performance and robustness[C]//2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS). Chennai: IEEE, 2024.
    [19] CHILD R, GRAY S, RADFORD A, et al. Generating long sequences with sparse transformers[EB/OL]. (2019-02-23)[2025-07-12]. https://arxiv.org/abs/1904.10509.
    [20] XIE E, WANG W, YU Z, et al. Segformer: simple and efficient design for semantic segmentation with transformers[J]. Advances in neural information processing systems, 2021, 34: 12077-12090.
    [21] MA X, DAI X Y, BAI Y, et al. Rewrite the stars[C]//2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2024: 5694-5703.
    [22] TIAN Z, SHEN C H, CHEN H, et al. FCOS: a simple and strong anchor-free object detector[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 1922-1933.
    [23] ZHANG J M, ZENG Z G, SHARMA P K, et al. A dual encoder crack segmentation network with Haar wavelet-based high–low frequency attention[J]. Expert Systems with Applications, 2024, 256: 124950. doi: 10.1016/j.eswa.2024.124950
    [24] CHEN G G, DAI K X, YANG K Z, et al. Bracketing image restoration and enhancement with high-low frequency decomposition[C]//2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Seattle: IEEE, 2024: 6097-6107.
    [25] DONG J X, PAN J S, YANG Z B, et al. Multi-scale residual low-pass filter network for image deblurring[C]//2023 IEEE/CVF International Conference on Computer Vision (ICCV). Paris: IEEE, 2023: 12311-12320.
    [26] AI D H, JIANG G Y, KEI L S, et al. Automatic pixel-level pavement crack detection using information of multi-scale neighborhoods[J]. IEEE Access, 2018, 6: 24452-24463. doi: 10.1109/ACCESS.2018.2829347
    [27] ZHANG L, YANG F, ZHANG Y D, et al. Road crack detection using deep convolutional neural network[C]//2016 IEEE International Conference on Image Processing (ICIP). Phoenix: IEEE, 2016: 3708-3712.
    [28] 李林超, 钟良剑, 苏庆, 等. 基于多源数据融合的城市土地利用精细识别方法[J]. 西南交通大学学报, 2025, 60(2): 326-335.

    LI Linchao, ZHONG Liangjian, SU Qing, et al. Fine urban land use identification based on fusion of multi-source data[J]. Journal of Southwest Jiaotong University, 2025, 60(2): 326-335.
    [29] 李恒超, 刘香莲, 刘鹏, 等. 基于多尺度感知的密集人群计数网络[J]. 西南交通大学学报, 2024, 59(5): 1176-1183, 1214.

    LI Hengchao, LIU Xianglian, LIU Peng, et al. Dense crowd counting network based on multi-scale perception[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1176-1183, 1214.
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  83
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-17
  • 修回日期:  2025-08-17
  • 网络出版日期:  2025-11-21

目录

    /

    返回文章
    返回