• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

冻融循环作用下的建筑灰岩风化特性演变

洪杰 张悦 彭宁波 郝榕榕 黄继忠

洪杰, 张悦, 彭宁波, 郝榕榕, 黄继忠. 冻融循环作用下的建筑灰岩风化特性演变[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20250132
引用本文: 洪杰, 张悦, 彭宁波, 郝榕榕, 黄继忠. 冻融循环作用下的建筑灰岩风化特性演变[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20250132
HONG Jie, ZHANG Yue, PENG Ningbo, HAO Rongrong, HUANG Jizhong. Evolution of Weathering Characteristics of Building Limestone Under Freeze-Thaw Cycles[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20250132
Citation: HONG Jie, ZHANG Yue, PENG Ningbo, HAO Rongrong, HUANG Jizhong. Evolution of Weathering Characteristics of Building Limestone Under Freeze-Thaw Cycles[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20250132

冻融循环作用下的建筑灰岩风化特性演变

doi: 10.3969/j.issn.0258-2724.20250132
基金项目: 山西省科技重大专项计划“揭榜挂帅”项目(202201150501024);国家自然科学基金资助项目(42007265;51808246)
详细信息
    作者简介:

    洪杰(1996—),男,博士研究生,研究方向为建筑遗产劣化机理与无损检测,E-mail:hj-wenxin@shu.edu.cn

    通讯作者:

    张悦(1989—),女,副教授,博士,研究方向为岩土质文物保护理论与技术,E-mail:2019zhangy@shu.edu.cn

  • 中图分类号: TU45

Evolution of Weathering Characteristics of Building Limestone Under Freeze-Thaw Cycles

  • 摘要:

    冻融循环是影响北方灰岩质文物的主要因素之一,普遍诱发多种表层风化病害,严重威胁文物的长久保存. 针对新鲜灰岩开展浸水冻融模拟风化试验,综合多种表征技术获取物理力学性质指标发展规律,结合孔隙结构变化从宏观和微观尺度定量揭示灰岩的冻融损伤机制,并通过熵权-线性加权法实现灰岩风化的综合评估. 结果表明:冻融循环50次后,纵波波速、表面硬度显著下降,损失率均在10%以上,毛细吸水系数提升了1倍以上;单轴抗压强度衰减率为30.6%,循环次数越大灰岩压缩后的结构完整性越差;灰岩孔隙主要由介孔(0.1 ~ 1000.0 μm)组成,冻融循环导致孔隙数量和体积增加,同时伴随颗粒磨损以及裂隙扩张;力学性能的半衰期是衡量灰岩抗冻融能力的重要参数,基于无损指标构建的多元回归模型能够有效预测单轴抗压强度变化;毛细吸水系数对风化损伤的响应最为敏感,引入完整度指标,有助于从多维度实现建筑灰岩风化等级的量化评估. 研究成果为灰岩材料的科学认知和文物风化的现状评估提供了理论依据和实践指导.

     

  • 图 1  灰岩的矿物组成

    Figure 1.  Mineralogical composition of limestone

    图 2  灰岩微观形貌

    Figure 2.  Microscopic morphology of limestone

    图 3  冻融循环中灰岩纵波波速和波速比变化

    Figure 3.  Variation of P-wave velocity and velocity ratio of limestone during freeze-thaw cycles

    图 4  冻融循环中灰岩表面硬度变化

    Figure 4.  Variation of surface hardness of limestone during freeze-thaw cycles

    图 5  冻融循环中灰岩毛细吸水参数变化

    Figure 5.  Variation of capillary water absorption coefficient of limestone during freeze-thaw cycles

    图 6  冻融循环中灰岩单轴抗压强度变化

    Figure 6.  Variation of uniaxial compressive strength of limestone during freeze-thaw cycles

    图 7  不同冻融循环次数的灰岩单轴压缩破坏形态

    Figure 7.  Uniaxial compression damage patterns of limestone with different freeze-thaw cycles

    图 8  冻融循环中灰岩开孔孔隙率与饱和吸水率变化

    Figure 8.  Variation of open porosity rate and saturated water content rate of limestone during freeze-thaw cycles

    图 9  冻融循环中灰岩孔隙特征变化

    Figure 9.  Variation of pore characteristics of limestone during freeze-thaw cycles

    图 10  灰岩的微观结构

    Figure 10.  Microstructure of limestone

    图 11  宏观参数的相关性分析

    Figure 11.  Correlation analysis of macro indicators

    图 12  淮安明祖陵石刻像风化特征

    Figure 12.  Weathering characteristics of stone carvings at Ming Ancesters Mausoleum in Huai’an

    图 13  基于熵权-线性加权法的灰岩量化评估

    Figure 13.  Quantitative evaluation of limestone based on entropy weight–linear weighting method

    表  1  新鲜灰岩的基本物理力学性质

    Table  1.   Basic physical and mechanical properties of fresh limestone

    性质 干密度/
    (g•cm−3
    饱和吸水率/
    %
    开口孔隙率/
    %
    毛细吸水系数/
    (kg•m−2•h−0.5
    纵波波速/
    (m•s−1
    表面硬度/
    HLD
    单轴抗压强度/
    MPa
    数值 2.71 ~ 2.75 0.45 ~ 0.51 1.23 ~ 1.36 0.189 ~ 0.216 36393981 645 ~ 682 146.78 ~ 169.88
    下载: 导出CSV

    表  2  冻融循环中灰岩的汞注入量变化

    Table  2.   Variation of mercury intrusion volume of limestone during freeze-thaw cycles

    循环次数/次 孔隙0.1~10.0 μm 孔隙10~1000.0 μm 全孔径范围
    汞注入量/(mL•g−1 占比/% 汞注入量/(mL•g−1 占比/% 汞注入量/(mL•g−1 占比/%
    0 0.0017 12.50 0.0119 87.50 0.0136 100.00
    20 0.0018 10.17 0.0159 89.83 0.0177 100.00
    30 0.0021 10.71 0.0175 89.29 0.0196 100.00
    50 0.0024 10.86 0.0197 89.14 0.0221 100.00
    下载: 导出CSV
  • [1] 陈晓瑜, 张婷, 王金华. 我国石质文物分类研究[J]. 石窟与土遗址保护研究, 2022(1): 39-46.

    CHEN Xiaoyu, ZHANG Ting, WANG Jinhua. Study on the classification of stone cultural relics in China[J]. Research on the Conservation of Cave Temples and Earthen Sites, 2022(1): 39-46.
    [2] PINHEIRO A C, MESQUITA N, TROVÃO J, et al. Limestone biodeterioration: a review on the Portuguese cultural heritage scenario[J]. Journal of Cultural Heritage, 2019, 36: 275-285. doi: 10.1016/j.culher.2018.07.008
    [3] 陈建平, 严绍军, 陈嘉琦, 等. 龙门石窟地质分带及风化病害特征研究[J/OL]. 重庆大学学报, 2024: 1-11. (2024-10-24). https: //kns.cnki.net/KCMS/detail/detail.aspx?filename=FIVE20241023001&dbname=CJFD&dbcode=CJFQ.

    CHEN Jianping, YAN Shaojun, CHEN Jiaqi, et al. Study on the geological characteristic zones and features of weathering diseases in the Longmen Grottoes[J/OL]. Journal of Chongqing University, 2024: 1-11. (2024-10-24). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=FIVE20241023001&dbname=CJFD&dbcode=CJFQ.
    [4] 何敬源, 高伟豪, 张健, 等. 赤泥基稳定碎石抗冻融性能分析[J]. 西南交通大学学报, 2025, 60(5): 1149-1159.

    HE Jingyuan, GAO Weihao, ZHANG Jian, et al. Freeze-thaw resistance of red mud-based stabilized crushed stone[J]. Journal of__Southwcst Jiaotong University. 2025. _60(5): _1149-1159.
    [5] 刘波, 孙颜顶, 袁艺峰, 等. 不同含水率冻结砂岩强度特性及强度强化机制[J]. 中国矿业大学学报, 2020, 49(6): 1085-1093, 1127.

    LIU Bo, SUN Yanding, YUAN Yifeng, et al. Strength characteristics of frozen sandstone with different water content and its strengthening mechanism[J]. Journal of China University of Mining & Technology, 2020, 49(6): 1085-1093,1127.
    [6] PENG N B, HONG J, ZHU Y, et al. Experimental investigation of the influence of freeze–thaw mode on damage characteristics of sandstone[J]. Applied Sciences, 2022, 12(23): 12395. doi: 10.3390/app122312395
    [7] KHANLARI G, SAHAMIEH R Z, ABDILOR Y. The effect of freeze–thaw cycles on physical and mechanical properties of Upper Red Formation sandstones, central part of Iran[J]. Arabian Journal of Geosciences, 2015, 8(8): 5991-6001. doi: 10.1007/s12517-014-1653-y
    [8] 甘志鑫, 黄继忠, 张悦, 等. 冻融作用下云冈石窟砂岩损伤特性与风化评估[J]. 上海大学学报(自然科学版), 2024, 30(1): 17-30.

    GAN Zhixin, HUANG Jizhong, ZHANG Yue, et al. Damage characteristics and weathering evaluation of Yungang Grottoes sandstone under freeze-thaw[J]. Journal of Shanghai University (Natural Science Edition), 2024, 30(1): 17-30.
    [9] 廖茹雪, 谌文武, 王南, 等. 基于砂岩冻融敏感性的遗迹劣化预测[J]. 中南大学学报(自然科学版), 2019, 50(12): 3084-3096.

    LIAO Ruxue, CHEN Wenwu, WANG Nan, et al. Forecast of heritage deterioration based on freeze-thaw sensitivity of sandstone[J]. Journal of Central South University (Science and Technology), 2019, 50(12): 3084-3096.
    [10] 贾海梁, 项伟, 谭龙, 等. 砂岩冻融损伤机制的理论分析和试验验证[J]. 岩石力学与工程学报, 2016, 35(5): 879-895.

    JIA Hailiang, XIANG Wei, TAN Long, et al. Theoretical analysis and experimental verifications of frost damage mechanism of sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(5): 879-895.
    [11] 张景科, 王玉超, 邵明申, 等. 基于原位无/微损测试方法的砂岩摩崖造像表层风化特征与程度研究[J]. 西北大学学报(自然科学版), 2021, 51(3): 379-389.

    ZHANG Jingke, WANG Yuchao, SHAO Mingshen, et al. Study on weathering characteristic and degree through non/little-destructive methods in site for sandstone Cliffside figures[J]. Journal of Northwest University (Natural Science Edition), 2021, 51(3): 379-389.
    [12] 刘成禹, 何满潮. 对岩石风化程度敏感的化学风化指数研究[J]. 地球与环境, 2011, 39(3): 349-354.

    LIU Chengyu, HE Manchao. Research on the sensitive chemical weathering indices to rock weathering[J]. Earth and Environment, 2011, 39(3): 349-354.
    [13] LIAO R X, CHEN W W, LIU P R, et al. Evolution of pore structure and cement composition during weathering of conglomerate at Mogao Grottoes in alkaline and arid regions, NW China[J]. Catena, 2024, 246: 108453. doi: 10.1016/j.catena.2024.108453
    [14] 王春萍, 王璐, 刘建锋, 等. 单轴压缩条件下单裂隙花岗岩力学特性及破坏特征[J]. 西南交通大学学报, 2024, 59(2): 369-376, 446.

    WANG Chunping, WANG Lu, LIU Jianfeng, et al. Mechanical properties and failure characteristics of granite intersected with single fractures under uniaxial compression[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 369-376,446.
    [15] 寇昊, 何川, 陈子全, 等. 考虑残余强度的层状岩体损伤演化规律[J]. 西南交通大学学报, 2023, 58(5): 1064-1072.

    KOU Hao, HE Chuan, CHEN Ziquan, et al. Damage evolution law of layered rock mass considering residual strength[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1064-1072.
    [16] 穆成林, 李华东, 裴向军, 等. 溶蚀岩体各向异性力学性质的试验研究[J]. 西南交通大学学报, 2022, 57(5): 1070-1076, 1112.

    MU Chenglin, LI Huadong, PEI Xiangjun, et al. Experimental study on anisotropy mechanical properties of corroded rock mass[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 1070-1076,1112.
    [17] FENER M, KAHRAMAN S, BILGIL A, et al. A comparative evaluation of indirect methods to estimate the compressive strength of rocks[J]. Rock Mechanics and Rock Engineering, 2005, 38(4): 329-343. doi: 10.1007/s00603-005-0061-8
    [18] 中华人民共和国住房和城乡建设部. 工程岩体试验方法标准: GB/T 50266-2013[S]. 北京: 中国计划出版社, 2013.
    [19] 中华人民共和国住房和城乡建设部. 工程岩体试验方法标准: GB/T 50266—2013[S]. 北京: 中国计划出版社, 2013.
    [20] 中华人民共和国建设部. 岩土工程勘察规范: GB 50021—2001(2009年版)[S]. 北京: 中国建筑工业出版社, 2009.
    [21] BENAVENTE D, PLA C, CUETO N, et al. Predicting water permeability in sedimentary rocks from capillary imbibition and pore structure[J]. Engineering Geology, 2015, 195: 301-311. doi: 10.1016/j.enggeo.2015.06.003
    [22] GRAUE B, SIEGESMUND S, MIDDENDORF B. Quality assessment of replacement stones for the cologne cathedral: mineralogical and petrophysical requirements[J]. Environmental Earth Sciences, 2011, 63(7): 1799-1822.
    [23] 杨志全, 甘进, 樊详珑, 等. 岩石冻融损伤机理研究进展及展望[J]. 防灾减灾工程学报, 2023, 43(1): 176-188.

    YANG Zhiquan, GAN Jin, FAN Xianglong, et al. Research progress and prospect on freeze-thaw damage mechanism of rocks[J]. Journal of Disaster Prevention and Mitigation Engineering, 2023, 43(1): 176-188.
    [24] MENG X Z, ZHANG H M, YUAN C, et al. Damage constitutive prediction model for rock under freeze–thaw cycles based on mesoscopic damage definition[J]. Engineering Fracture Mechanics, 2023, 293: 109685. doi: 10.1016/j.engfracmech.2023.109685
    [25] MUTLUTÜRK M, ALTINDAG R, TÜRK G. A decay function model for the integrity loss of rock when subjected to recurrent cycles of freezing–thawing and heating–cooling[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(2): 237-244. doi: 10.1016/S1365-1609(03)00095-9
    [26] 闻磊, 沈建琳, 梅松华, 等. 冻融损伤岩体质量评价方法研究[J]. 矿业研究与开发, 2020, 40(12): 57-63.

    WEN Lei, SHEN Jianlin, MEI Songhua, et al. Study on quality evaluation method of freeze-thaw damaged rock mass[J]. Mining Research and Development, 2020, 40(12): 57-63.
    [27] 徐杨, 张理想, 张景科, 等. 北石窟寺白垩系砂岩冻融损伤机理研究[J]. 石窟与土遗址保护研究, 2023(2): 49-58.

    XU Yang, ZHANG Lixiang, ZHANG Jingke, et al. A study on the freeze-thaw damage mechanism of Cretaceous sandstone in the beishikusi grottoes[J]. Research on the Conservation of Cave Temples and Earthen Sites, 2023(2): 49-58.
    [28] ESLAMI J, WALBERT C, BEAUCOUR A L, et al. Influence of physical and mechanical properties on the durability of limestone subjected to freeze-thaw cycles[J]. Construction and Building Materials, 2018, 162: 420-429. doi: 10.1016/j.conbuildmat.2017.12.031
    [29] ZHANG R Y, HUANG J Z, CHENG Y, et al. Semi-quantitative identification of pore characteristics for Yungang grotto sandstone via acoustic emission signals and information fusion convolutional neural network[J]. Journal of Building Engineering, 2024, 98: 111353. doi: 10.1016/j.jobe.2024.111353
    [30] 宋佳航, 严绍军, 项伟, 等. 大足石刻宝顶山砂岩毛细水迁移特性影响因素[J]. 地质科技通报, 2022, 41(4): 282-291, 300.

    SONG Jiahang, YAN Shaojun, XIANG Wei, et al. Influencing factors of capillary water migration characteristics of the sandstones in Baoding Mountain, Dazu Stone Carvings[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 282-291,300.
    [31] 叶嘉成, 张中俭. 北京大理岩物理力学参数的相关性研究[J]. 工程地质学报, 2019, 27(3): 532-538.

    YE Jiacheng, ZHANG Zhongjian. Estimation of uniaxial compressive strength and modulus of elasticity of Beijing marbles based on Schmidt hardness and leeb hardness and p-wave velocity[J]. Journal of Engineering Geology, 2019, 27(3): 532-538.
    [32] 陶保成, 杨毅. 明祖陵神道石刻二期保护的修复技术[J]. 东南文化, 2006(2): 89-93.

    TAO Baocheng, YANG Yi. Renovation technology of stone inscription in the spirit path of Ming emperors’ Mausoleum[J]. Southeast Culture, 2006(2): 89-93.
    [33] 李宏松. 文物岩石材料劣化特征及评价方法[D]. 北京: 中国地质大学(北京), 2011.
    [34] XIA Q, CHEN W W, TANG Y M, et al. Surface weathering of the cliff at Bingling temple grottoes: a cultural relic on the bank of reservoir in NW China[J]. Engineering Geology, 2024, 343: 107767. doi: 10.1016/j.enggeo.2024.107767
    [35] HU C, WANG Y, XIA G, et al. Health assessment method of cave murals based on entropy-weighted AHP-cloud model[J]. Heritage Science, 2025, 13: 279-290.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  22
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-25
  • 修回日期:  2025-09-05
  • 网络出版日期:  2025-10-23

目录

    /

    返回文章
    返回