Seismic Design Method of Ultra-High Performance Concrete Prestressed Connection of Prefabricated Bridge Pier
-
摘要:
为提升装配式桥墩的工业化水平,研发与超高性能混凝土(UHPC)桥墩性能相匹配的连接形式,提出一种外置式预应力连接接头及其张拉工艺,并通过足尺试验验证该构造和工艺的可行性;结合有限元分析,研究接头预应力和轴压比对UHPC桥墩性能的影响,并基于能力设计法提出预应力接头的设计方法. 研究结果表明:采用外置式预应力连接接头的装配式桥墩发生了典型的弯曲破坏,桥墩墩身UHPC混凝土被压溃,但桥墩与承台接缝处未出现界面分离;预应力高强钢筋的应力变化和桥墩水平荷载基本呈正比,并且变化幅度最大仅为9%,表明试件采用的外置式预应力连接接头的连接性能可靠,结构整体性能好;当桥墩高强钢筋张拉力较小时,桥墩和承台接缝处会出现接缝开口,装配式桥墩的刚度将减小,但对试件的峰值承载能力基本没有影响.
-
关键词:
- 装配式桥墩 /
- 外置式预应力连接接头 /
- 足尺模型 /
- 有限元分析 /
- 连接性能
Abstract:To enhance the industrialization level of the prefabricated bridge pier and develop connection forms compatible with the performance of the ultra-high performance concrete (UHPC) pier, an external prestressed connection joint and its tensioning process were proposed. The feasibility of this configuration and technique was validated through full-scale tests. Combined with finite element analysis, the influence of joint prestress and axial compression ratio on the performance of the UHPC pier was investigated, and a design method for prestressed joints based on the capacity design method was proposed. The research results have shown that the prefabricated pier with the external prestressed connection joint experiences typical bending failure, with the UHPC concrete of the pier body being crushed, but no interfacial separation occurs at the interface between the pier and the cap. The stress variation of the prestressed high-strength reinforcement is basically proportional to the horizontal load of the pier, with the maximum variation amplitude of only 9%, indicating that the connection performance of the external prestressed connection joint used in the specimen has reliable connection performance and good overall structural performance. When the tension force of the high-strength reinforcement in the pier is small, joint opening occurs at the interface between the pier and the cap, reducing the stiffness of the prefabricated bridge pier, but it has little effect on the peak load-bearing capacity of the specimen.
-
表 1 实验材料力学性能主要参数
Table 1. Main mechanical parameters of test materials
试件材料 力学指标 测试值 UHPC(墩身) 弹性模量/MPa 48000 立方体抗压强度/MPa 140 C50
(承台 + 加载头)弹性模量/MPa 36500 立方体抗压强度/MPa 54 HRB400
(墩身钢筋)弹性模量/MPa 206000 屈服强度/MPa 480 抗拉强度/MPa 540 预应力高强钢筋 弹性模量/MPa 206000 屈服强度/MPa 1080 抗拉强度/MPa 1230 -
[1] 葛继平, 闫兴非, 王志强. 灌浆套筒和预应力筋连接的预制拼装桥墩的抗震性能[J]. 交通运输工程学报, 2018, 18(2): 42-52. doi: 10.3969/j.issn.1671-1637.2018.02.005GE Jiping, YAN Xingfei, WANG Zhiqiang. Seismic performance of prefabricated assembled pier with grouted sleeve and prestressed reinforcements[J]. Journal of Traffic and Transportation Engineering, 2018, 18(2): 42-52. doi: 10.3969/j.issn.1671-1637.2018.02.005 [2] 许子宜, 张子飏, 徐腾飞. 预制装配式混凝土桥梁结构2020年度研究进展[J]. 土木与环境工程学报(中英文), 2021, 43(增): 288-296.XU Ziyi, ZHANG Ziyang, XU Tengfei. State-of-the-art review of prefabricated concrete bridge structures in 2020[J]. Journal of Civil and Environmental Engineering, 2021, 43(S1): 288-296. [3] 张广达, 苏思博, 韩强, 等. UHPC灌浆预制桥墩-承台承插节点抗震性能研究[J]. 中国公路学报, 2023, 36(10): 368-381. doi: 10.19721/j.cnki.1001-7372.2023.10.029ZHANG Guangda, SU Sibo, HAN Giang, et al. Seismic Behavior Investigation of UHPC Grouted Precast Column-to-foundation Joints with Socket Connection[J]. China J. Highw. Transp, 2023, 36(10): 368-381. doi: 10.19721/j.cnki.1001-7372.2023.10.029 [4] 林上顺, 林永捷, 张建帅, 等. ECC和预制榫卯混合连接装配式桥墩抗震试验及计算方法[J]. 西南交通大学学报, 2025, 60(2): 472-483. doi: 10.3969/j.issn.0258-2724.20230040LIN Shangshun, LIN Yongjie, ZHANG Jianshuai, et al. Seismic Testing and Calculation Method of Assembled Bridge Piers with Hybrid Connection of Engineered Cementitious Composites and Assembled Mortise-Tenon Joints[J]. Journal of Southwest Jiaotong University, 2025, 60(2): 472-483. doi: 10.3969/j.issn.0258-2724.20230040 [5] 欧智菁, 谢铭勤, 秦志清, 等. 带钢管剪力键的装配式混凝土桥墩抗震性能[J]. 西南交通大学学报, 2021, 56(6): 1169-1175, 1191. doi: 10.3969/j.issn.0258-2724.20191177OU Zhijing, XIE Mingqin, QIN Zhiqing, et al. Seismic Performance Test and FEM Analysis of Assembled Concrete Pier with Sleeve and Steel Tube Shear Connector[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1169-1175,1191. doi: 10.3969/j.issn.0258-2724.20191177 [6] DING M J, XU W B, WANG J, et al. Seismic performance of prefabricated concrete columns with grouted sleeve connections, and a deformation-capacity estimation method[J]. Journal of Building Engineering, 2022, 55: 104722. doi: 10.1016/j.jobe.2022.104722 [7] 王志强, 卫张震, 魏红一, 等. 预制拼装联接件形式对桥墩抗震性能的影响[J]. 中国公路学报, 2017, 30(5): 74-80. doi: 10.3969/j.issn.1006-3897.2017.05.010WANG Zhiqiang, WEI Zhangzhen, WEI Hongyi, et al. Influences of Precast Segmental Connector Forms on Seismic Performance of Bridge Pier[J]. China J. Highw. Transp, 2017, 30(5): 74-80. doi: 10.3969/j.issn.1006-3897.2017.05.010 [8] 徐艳, 曾增, 王志强, 等. 承插式桥墩连接构造及其力学行为的研究进展[J]. 土木工程学报, 2023, 56(1): 90-108.XU Yan, ZENG Zeng, WANG Zhiqiang, et al. Review of the state-of-the-art of the configurations and mechanical behaviors of piers with socket connections[J]. China Civil Engineering Journal, 2023, 56(1): 90-108. [9] JIN Z B, CHEN K, PEI S L. Cyclic response of precast, hollow bridge columns with postpour section and socket connection[J]. Journal of Structural Engineering, 2022, 148: 06021005. doi: 10.1061/(ASCE)ST.1943-541X.0003220 [10] HARALDSSON O S, JANES T M, EBERHARD M O, et al. Seismic resistance of socket connection between footing and precast column[J]. Journal of Bridge Engineering, 2013, 18(9): 910-919. doi: 10.1061/(ASCE)BE.1943-5592.0000413 [11] 徐艳, 曾增, 葛继平, 等. 承插式预制拼装桥墩的最小合理承插深度[J]. 同济大学学报(自然科学版), 2019, 47(12): 1706-1711. doi: 10.11908/j.issn.0253-374x.2019.12.003XU Yan, ZENG Zeng, GE Jiping, et al. Minimum Reasonable Socket Depth of Precast Pier-footing with Socket Connection[J]. Journal of Tongji University (Natural Science), 2019, 47(12): 1706-1711. doi: 10.11908/j.issn.0253-374x.2019.12.003 [12] 葛继平, 闫兴非, 王志强. 2段式预制拼装预应力混凝土桥墩的抗震性能[J]. 铁道科学与工程学报, 2017, 14(11): 2390-2398. doi: 10.3969/j.issn.1672-7029.2017.11.017GE Jiping, YAN Xingfei, WANG Zhiqiang. Seismic performance analysis of two-segment bridge columns with prestressing bars[J]. Journal of Railway Science and Engineering, 2017, 14(11): 2390-2398. doi: 10.3969/j.issn.1672-7029.2017.11.017 [13] TONG T, ZHUO W D, JIANG X F, et al. Research on seismic resilience of prestressed precast segmental bridge piers reinforced with high-strength bars through experimental testing and numerical modelling[J]. Engineering Structures, 2019, 197: 109335. doi: 10.1016/j.engstruct.2019.109335 [14] 赵建锋, 刘雪飞, 孟庆一, 等. 外置可更换耗能装置的节段拼装CFST桥墩抗震性能分析[J]. 西南交通大学学报, 2022, 57(5): 1113-1121, 1145.ZHAO Jian-feng, LIU Xue-fei, MENG Qingyi, et al. Seismic Performance of Precast Segmental CFST Bridge Piers with External Replaceable Energy Dissipation Devices[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 1113-1121,1145. [15] 李立峰, 赵智, 唐嘉豪, 等. 采用UHPC连接的插槽式预制拼装桥墩抗震性能试验研究[J]. 振动与冲击, 2025, 44(2): 210-220. doi: 10.13465/j.cnki.jvs.2025.02.022LI Lifeng, ZHAO Zhi, TANG Jiahao, et al. Experimental study on the seismic performance of prefabricated piers connected by UHPC[J]. Journal of Vibration and Shock, 2025, 44(2): 210-220. doi: 10.13465/j.cnki.jvs.2025.02.022 [16] 欧智菁, 陈伟隆, 曹磊. UHPC预制管混凝土组合柱抗震性能[J]. 西南交通大学学报, 2025, 60(1): 63-71. doi: 10.3969/j.issn.0258-2724.20230073OU Zhijing, CHEN Weilong, CAO Lei. Seismic Performance Investigation of UHPC Precast Concrete Composite Columns[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 63-71. doi: 10.3969/j.issn.0258-2724.20230073 [17] XU W J, MA B, DUAN X Z, et al. Experimental investigation of seismic behavior of UHPC connection between precast columns and footings in bridges[J]. Engineering Structures, 2021, 239: 112344. doi: 10.1016/j.engstruct.2021.112344 [18] ZHANG Z, ZOU P, DENG E F, et al. Seismic performance of a new type of prefabricated bridge pier with cast-in-place UHPC jacketing[J]. Archives of Civil and Mechanical Engineering, 2024, 24(3): 173. doi: 10.1007/s43452-024-00982-x [19] CUI B, ZHU S C, ZHANG G D, et al. Development of fully dry-connection for prefabricated hollow section CA-RPC pier[J]. Case Studies in Construction Materials, 2023, 19: e02445. doi: 10.1016/j.cscm.2023.e02445 [20] WANG Z, WANG J Q, LIU T X, et al. An explicit analytical model for seismic performance of an unbonded post-tensioned precast segmental rocking hollow pier[J]. Engineering Structures, 2018, 161: 176-191. doi: 10.1016/j.engstruct.2018.02.025 [21] 袁星, 周涌昊, 谭舜, 等. 装配式UHPC空心墩的内浇式组合连接压弯试验研究[J]. 世界地震工程, 2024, 40(4): 112-120. doi: 10.19994/j.cnki.WEE.2024.0071YUAN Xing, ZHOU Yonghao, TAN Shun, et al. Compressive and bending test of assembled UHPC hollow pier using internal delayed casted composite connection[J]. World Earthquake Engineering, 2024, 40(4): 112-120. doi: 10.19994/j.cnki.WEE.2024.0071 [22] 李运生, 王泽涵, 杨斌, 等. 高速铁路桥梁装配式桥墩足尺寸拟静力试验研究[J]. 铁道学报, 2022, 44(9): 135-145.LI Yunsheng, WANG Zehan, YANG Bin, et al. Quasi-static Experimental Research on Full-scaled Assembled Piers of High-speed Railway Bridges[J]. Journal of the China Railway Society, 2022, 44(9): 135-145. [23] GUO T, CAO Z L, XU Z K, et al. Cyclic load tests on self-centering concrete pier with external dissipators and enhanced durability[J]. Journal of Structural Engineering, 2016, 142: 04015088. doi: 10.1061/(ASCE)ST.1943-541X.0001357 [24] 曲哲. 摇摆墙——框架结构抗震损伤机制控制及设计方法研究[D]. 北京: 清华大学, 2010. [25] 张凯迪, 贾俊峰, 白玉磊等. 预应力连接预制节段桥墩拟静力试验数值仿真分析[J]. 工程力学, 2022, 39(增1): 207-213, 228. doi: 10.6052/j.issn.1000-4750.2021.05.S040ZHANG Kaidi, JIA Junfeng, BAI Yulei, et al. Numerical Simulation Analyses on Quasi-stastic Tests of Precast Segmental Prestressed Bridge Columns[J]. Engineering Mechanics, 2022, 39(S1): 207-213,228. doi: 10.6052/j.issn.1000-4750.2021.05.S040 -
下载: