• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

UHPC预应力连接装配式桥墩抗震的设计方法

朱圣春 崔冰 宋颖彤 王康康 韩永安 赵灿晖

朱圣春, 崔冰, 宋颖彤, 王康康, 韩永安, 赵灿晖. UHPC预应力连接装配式桥墩抗震的设计方法[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20250103
引用本文: 朱圣春, 崔冰, 宋颖彤, 王康康, 韩永安, 赵灿晖. UHPC预应力连接装配式桥墩抗震的设计方法[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20250103
ZHU Shengchun, CUI Bing, SONG Yingtong, WANG Kangkang, HAN Yongan, ZHAO Canhui. Seismic Design Method of Ultra-High Performance Concrete Prestressed Connection of Prefabricated Bridge Pier[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20250103
Citation: ZHU Shengchun, CUI Bing, SONG Yingtong, WANG Kangkang, HAN Yongan, ZHAO Canhui. Seismic Design Method of Ultra-High Performance Concrete Prestressed Connection of Prefabricated Bridge Pier[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20250103

UHPC预应力连接装配式桥墩抗震的设计方法

doi: 10.3969/j.issn.0258-2724.20250103
基金项目: 国家自然科学基金项目(U21A20154);四川省重点研发计划(2023YFS0429)
详细信息
    作者简介:

    朱圣春(1997—),男,博士研究生,研究方向为桥梁与隧道工程,E-mail:zhushengchun0505@163.com

    通讯作者:

    赵灿晖(1970—),男,教授,博士,研究方向为桥梁工程抗震,E-mail:zch2887@163.com

  • 中图分类号: U442.55

Seismic Design Method of Ultra-High Performance Concrete Prestressed Connection of Prefabricated Bridge Pier

  • 摘要:

    为提升装配式桥墩的工业化水平,研发与超高性能混凝土(UHPC)桥墩性能相匹配的连接形式,提出一种外置式预应力连接接头及其张拉工艺,并通过足尺试验验证该构造和工艺的可行性;结合有限元分析,研究接头预应力和轴压比对UHPC桥墩性能的影响,并基于能力设计法提出预应力接头的设计方法. 研究结果表明:采用外置式预应力连接接头的装配式桥墩发生了典型的弯曲破坏,桥墩墩身UHPC混凝土被压溃,但桥墩与承台接缝处未出现界面分离;预应力高强钢筋的应力变化和桥墩水平荷载基本呈正比,并且变化幅度最大仅为9%,表明试件采用的外置式预应力连接接头的连接性能可靠,结构整体性能好;当桥墩高强钢筋张拉力较小时,桥墩和承台接缝处会出现接缝开口,装配式桥墩的刚度将减小,但对试件的峰值承载能力基本没有影响.

     

  • 图 1  外置式预应力连接接头构造

    Figure 1.  Structure of external prestressed connection joint

    图 2  UHPC桥墩构造图

    Figure 2.  Configuration of UHPC bridge pier

    图 3  试验加载装置

    Figure 3.  Experimental loading system

    图 4  加载系统

    Figure 4.  Loading system

    图 5  传感器布置

    Figure 5.  Sensor layout

    图 6  破坏模式

    Figure 6.  Mode of failure

    图 7  试件裂缝分布(单位:m)

    Figure 7.  Crack distribution of specimen (unit: m)

    图 8  滞回水平力-位移曲线

    Figure 8.  Hysteretic lateral force–displacement curves

    图 10  预应力高强钢筋应力大小随加载位移变化

    Figure 10.  Stress changes of prestressed high-strength reinforcement with loading displacement

    图 11  装配式桥墩有限元模型

    Figure 11.  Finite element model of prefabricated bridge pier

    图 9  骨架曲线

    Figure 9.  Skeleton curves

    图 12  预应力高强钢筋应力随水平荷载变化

    Figure 12.  Stress changes of prestressed high-strength reinforcement with horizontal load

    图 13  F-100MPa工况下桥墩损伤变形图

    Figure 13.  Damage deformation of bridge pier under F-100 condition

    图 14  不同预应力下的骨架曲线

    Figure 14.  Skeleton curves under different prestress

    图 15  不同轴压比下骨架曲线对比

    Figure 15.  Comparison of skeleton curves under different axial compression ratios

    图 16  界面不出现分离时界面应力状态

    Figure 16.  Interface stress state without separation

    图 17  界面出现分离时界面应力状态

    Figure 17.  Interface stress state with separation

    图 18  外置式预应力连接接头设计方法

    Figure 18.  Design method of external prestressed connection joint

    表  1  实验材料力学性能主要参数

    Table  1.   Main mechanical parameters of test materials

    试件材料 力学指标 测试值
    UHPC(墩身)弹性模量/MPa48000
    立方体抗压强度/MPa140
    C50
    (承台 + 加载头)
    弹性模量/MPa36500
    立方体抗压强度/MPa54
    HRB400
    (墩身钢筋)
    弹性模量/MPa206000
    屈服强度/MPa480
    抗拉强度/MPa540
    预应力高强钢筋弹性模量/MPa206000
    屈服强度/MPa1080
    抗拉强度/MPa1230
    下载: 导出CSV
  • [1] 葛继平, 闫兴非, 王志强. 灌浆套筒和预应力筋连接的预制拼装桥墩的抗震性能[J]. 交通运输工程学报, 2018, 18(2): 42-52. doi: 10.3969/j.issn.1671-1637.2018.02.005

    GE Jiping, YAN Xingfei, WANG Zhiqiang. Seismic performance of prefabricated assembled pier with grouted sleeve and prestressed reinforcements[J]. Journal of Traffic and Transportation Engineering, 2018, 18(2): 42-52. doi: 10.3969/j.issn.1671-1637.2018.02.005
    [2] 许子宜, 张子飏, 徐腾飞. 预制装配式混凝土桥梁结构2020年度研究进展[J]. 土木与环境工程学报(中英文), 2021, 43(增): 288-296.

    XU Ziyi, ZHANG Ziyang, XU Tengfei. State-of-the-art review of prefabricated concrete bridge structures in 2020[J]. Journal of Civil and Environmental Engineering, 2021, 43(S1): 288-296.
    [3] 张广达, 苏思博, 韩强, 等. UHPC灌浆预制桥墩-承台承插节点抗震性能研究[J]. 中国公路学报, 2023, 36(10): 368-381. doi: 10.19721/j.cnki.1001-7372.2023.10.029

    ZHANG Guangda, SU Sibo, HAN Giang, et al. Seismic Behavior Investigation of UHPC Grouted Precast Column-to-foundation Joints with Socket Connection[J]. China J. Highw. Transp, 2023, 36(10): 368-381. doi: 10.19721/j.cnki.1001-7372.2023.10.029
    [4] 林上顺, 林永捷, 张建帅, 等. ECC和预制榫卯混合连接装配式桥墩抗震试验及计算方法[J]. 西南交通大学学报, 2025, 60(2): 472-483. doi: 10.3969/j.issn.0258-2724.20230040

    LIN Shangshun, LIN Yongjie, ZHANG Jianshuai, et al. Seismic Testing and Calculation Method of Assembled Bridge Piers with Hybrid Connection of Engineered Cementitious Composites and Assembled Mortise-Tenon Joints[J]. Journal of Southwest Jiaotong University, 2025, 60(2): 472-483. doi: 10.3969/j.issn.0258-2724.20230040
    [5] 欧智菁, 谢铭勤, 秦志清, 等. 带钢管剪力键的装配式混凝土桥墩抗震性能[J]. 西南交通大学学报, 2021, 56(6): 1169-1175, 1191. doi: 10.3969/j.issn.0258-2724.20191177

    OU Zhijing, XIE Mingqin, QIN Zhiqing, et al. Seismic Performance Test and FEM Analysis of Assembled Concrete Pier with Sleeve and Steel Tube Shear Connector[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1169-1175,1191. doi: 10.3969/j.issn.0258-2724.20191177
    [6] DING M J, XU W B, WANG J, et al. Seismic performance of prefabricated concrete columns with grouted sleeve connections, and a deformation-capacity estimation method[J]. Journal of Building Engineering, 2022, 55: 104722. doi: 10.1016/j.jobe.2022.104722
    [7] 王志强, 卫张震, 魏红一, 等. 预制拼装联接件形式对桥墩抗震性能的影响[J]. 中国公路学报, 2017, 30(5): 74-80. doi: 10.3969/j.issn.1006-3897.2017.05.010

    WANG Zhiqiang, WEI Zhangzhen, WEI Hongyi, et al. Influences of Precast Segmental Connector Forms on Seismic Performance of Bridge Pier[J]. China J. Highw. Transp, 2017, 30(5): 74-80. doi: 10.3969/j.issn.1006-3897.2017.05.010
    [8] 徐艳, 曾增, 王志强, 等. 承插式桥墩连接构造及其力学行为的研究进展[J]. 土木工程学报, 2023, 56(1): 90-108.

    XU Yan, ZENG Zeng, WANG Zhiqiang, et al. Review of the state-of-the-art of the configurations and mechanical behaviors of piers with socket connections[J]. China Civil Engineering Journal, 2023, 56(1): 90-108.
    [9] JIN Z B, CHEN K, PEI S L. Cyclic response of precast, hollow bridge columns with postpour section and socket connection[J]. Journal of Structural Engineering, 2022, 148: 06021005. doi: 10.1061/(ASCE)ST.1943-541X.0003220
    [10] HARALDSSON O S, JANES T M, EBERHARD M O, et al. Seismic resistance of socket connection between footing and precast column[J]. Journal of Bridge Engineering, 2013, 18(9): 910-919. doi: 10.1061/(ASCE)BE.1943-5592.0000413
    [11] 徐艳, 曾增, 葛继平, 等. 承插式预制拼装桥墩的最小合理承插深度[J]. 同济大学学报(自然科学版), 2019, 47(12): 1706-1711. doi: 10.11908/j.issn.0253-374x.2019.12.003

    XU Yan, ZENG Zeng, GE Jiping, et al. Minimum Reasonable Socket Depth of Precast Pier-footing with Socket Connection[J]. Journal of Tongji University (Natural Science), 2019, 47(12): 1706-1711. doi: 10.11908/j.issn.0253-374x.2019.12.003
    [12] 葛继平, 闫兴非, 王志强. 2段式预制拼装预应力混凝土桥墩的抗震性能[J]. 铁道科学与工程学报, 2017, 14(11): 2390-2398. doi: 10.3969/j.issn.1672-7029.2017.11.017

    GE Jiping, YAN Xingfei, WANG Zhiqiang. Seismic performance analysis of two-segment bridge columns with prestressing bars[J]. Journal of Railway Science and Engineering, 2017, 14(11): 2390-2398. doi: 10.3969/j.issn.1672-7029.2017.11.017
    [13] TONG T, ZHUO W D, JIANG X F, et al. Research on seismic resilience of prestressed precast segmental bridge piers reinforced with high-strength bars through experimental testing and numerical modelling[J]. Engineering Structures, 2019, 197: 109335. doi: 10.1016/j.engstruct.2019.109335
    [14] 赵建锋, 刘雪飞, 孟庆一, 等. 外置可更换耗能装置的节段拼装CFST桥墩抗震性能分析[J]. 西南交通大学学报, 2022, 57(5): 1113-1121, 1145.

    ZHAO Jian-feng, LIU Xue-fei, MENG Qingyi, et al. Seismic Performance of Precast Segmental CFST Bridge Piers with External Replaceable Energy Dissipation Devices[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 1113-1121,1145.
    [15] 李立峰, 赵智, 唐嘉豪, 等. 采用UHPC连接的插槽式预制拼装桥墩抗震性能试验研究[J]. 振动与冲击, 2025, 44(2): 210-220. doi: 10.13465/j.cnki.jvs.2025.02.022

    LI Lifeng, ZHAO Zhi, TANG Jiahao, et al. Experimental study on the seismic performance of prefabricated piers connected by UHPC[J]. Journal of Vibration and Shock, 2025, 44(2): 210-220. doi: 10.13465/j.cnki.jvs.2025.02.022
    [16] 欧智菁, 陈伟隆, 曹磊. UHPC预制管混凝土组合柱抗震性能[J]. 西南交通大学学报, 2025, 60(1): 63-71. doi: 10.3969/j.issn.0258-2724.20230073

    OU Zhijing, CHEN Weilong, CAO Lei. Seismic Performance Investigation of UHPC Precast Concrete Composite Columns[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 63-71. doi: 10.3969/j.issn.0258-2724.20230073
    [17] XU W J, MA B, DUAN X Z, et al. Experimental investigation of seismic behavior of UHPC connection between precast columns and footings in bridges[J]. Engineering Structures, 2021, 239: 112344. doi: 10.1016/j.engstruct.2021.112344
    [18] ZHANG Z, ZOU P, DENG E F, et al. Seismic performance of a new type of prefabricated bridge pier with cast-in-place UHPC jacketing[J]. Archives of Civil and Mechanical Engineering, 2024, 24(3): 173. doi: 10.1007/s43452-024-00982-x
    [19] CUI B, ZHU S C, ZHANG G D, et al. Development of fully dry-connection for prefabricated hollow section CA-RPC pier[J]. Case Studies in Construction Materials, 2023, 19: e02445. doi: 10.1016/j.cscm.2023.e02445
    [20] WANG Z, WANG J Q, LIU T X, et al. An explicit analytical model for seismic performance of an unbonded post-tensioned precast segmental rocking hollow pier[J]. Engineering Structures, 2018, 161: 176-191. doi: 10.1016/j.engstruct.2018.02.025
    [21] 袁星, 周涌昊, 谭舜, 等. 装配式UHPC空心墩的内浇式组合连接压弯试验研究[J]. 世界地震工程, 2024, 40(4): 112-120. doi: 10.19994/j.cnki.WEE.2024.0071

    YUAN Xing, ZHOU Yonghao, TAN Shun, et al. Compressive and bending test of assembled UHPC hollow pier using internal delayed casted composite connection[J]. World Earthquake Engineering, 2024, 40(4): 112-120. doi: 10.19994/j.cnki.WEE.2024.0071
    [22] 李运生, 王泽涵, 杨斌, 等. 高速铁路桥梁装配式桥墩足尺寸拟静力试验研究[J]. 铁道学报, 2022, 44(9): 135-145.

    LI Yunsheng, WANG Zehan, YANG Bin, et al. Quasi-static Experimental Research on Full-scaled Assembled Piers of High-speed Railway Bridges[J]. Journal of the China Railway Society, 2022, 44(9): 135-145.
    [23] GUO T, CAO Z L, XU Z K, et al. Cyclic load tests on self-centering concrete pier with external dissipators and enhanced durability[J]. Journal of Structural Engineering, 2016, 142: 04015088. doi: 10.1061/(ASCE)ST.1943-541X.0001357
    [24] 曲哲. 摇摆墙——框架结构抗震损伤机制控制及设计方法研究[D]. 北京: 清华大学, 2010.
    [25] 张凯迪, 贾俊峰, 白玉磊等. 预应力连接预制节段桥墩拟静力试验数值仿真分析[J]. 工程力学, 2022, 39(增1): 207-213, 228. doi: 10.6052/j.issn.1000-4750.2021.05.S040

    ZHANG Kaidi, JIA Junfeng, BAI Yulei, et al. Numerical Simulation Analyses on Quasi-stastic Tests of Precast Segmental Prestressed Bridge Columns[J]. Engineering Mechanics, 2022, 39(S1): 207-213,228. doi: 10.6052/j.issn.1000-4750.2021.05.S040
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  4
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-13
  • 录用日期:  2026-01-09
  • 修回日期:  2025-05-29
  • 网络出版日期:  2026-01-20

目录

    /

    返回文章
    返回