• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于机器学习算法的红层软岩尺寸效应模型

吕龙龙 李霄洋 廖红建 游耀星

吕龙龙, 李霄洋, 廖红建, 游耀星. 基于机器学习算法的红层软岩尺寸效应模型[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20250044
引用本文: 吕龙龙, 李霄洋, 廖红建, 游耀星. 基于机器学习算法的红层软岩尺寸效应模型[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20250044
LYU Longlong, LI Xiaoyang, LIAO Hongjian, YOU Yaoxing. Size Effect Model for Red-Bed Soft Rock Based on Machine Learning Algorithm[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20250044
Citation: LYU Longlong, LI Xiaoyang, LIAO Hongjian, YOU Yaoxing. Size Effect Model for Red-Bed Soft Rock Based on Machine Learning Algorithm[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20250044

基于机器学习算法的红层软岩尺寸效应模型

doi: 10.3969/j.issn.0258-2724.20250044
基金项目: 国家自然科学基金(51879212);宁夏回族自治区优秀青年项目(2024AAC05033)
详细信息
    作者简介:

    吕龙龙(1991—),男,讲师,博士,研究方向为结构性岩土材料变形及强度特性,E-mail:lvlonglong1125@163.com

    通讯作者:

    廖红建(1962—),女,教授,博士,研究方向为岩土本构关系与数值模拟,E-mail:hjliao@mail.xjtu.edu.cn

  • 中图分类号: TU452

Size Effect Model for Red-Bed Soft Rock Based on Machine Learning Algorithm

  • 摘要:

    构建精准的尺寸效应预测模型对使用室内试验单元强度设计大尺度构件结构具有重要的工程意义. 对不同高径比红层软岩试样进行无侧限单轴压缩试验,并评价现有尺寸效应模型对本文数据的可靠性;提出参数离散度,定义为每组试样的多个力学特征参数变异系数的均值,对试验结果的离散性进行分析;采用决策树回归、支持向量回归、多层感知机、随机森林回归、极限梯度提升回归5种机器学习模型预测不同尺寸红层软岩及其他岩类的单轴抗压强度,并引入SHAP (shapley additive explanations)方法揭示特征对预测结果的影响及贡献. 结果表明:随着试样高径比的降低,单轴抗压强度$ {\sigma _{\text{P}}} $、峰值轴应变$ {\varepsilon _{\text{P}}} $均逐渐增加,应力-应变曲线会由脆性向延性模式转换;胡麻岭红层软岩很难适应现有基于硬质岩提出的尺寸效应模型;高径比对试样离散度影响显著,离散度会随高径比增加先增加后迅速降低;极限梯度提升回归模型对红层软岩抗压强度的预测精度最高,测试集R2为0.989,多层感知机模型能够预测非标准尺寸煤岩、贫矿、大理岩的峰值应力,误差小于20%;岩石的微观排列更致密会导致模型预测值较真实值偏低;弹性模量权重过高会使模型高估目标值.

     

  • 图 1  试样X射线衍射图谱

    Figure 1.  X-ray diffraction pattern of sample

    图 2  不同高径比红层软岩部分试样破坏形态

    Figure 2.  Photographs of deformed rock samples with different height-diameter ratios

    图 3  不同高径比红层软岩应力-应变曲线

    Figure 3.  Stress–strain curves of red-bed soft rock with different height-diameter ratios

    图 4  9组软岩试样的抗压强度与高径比的关系

    Figure 4.  Relationships between compressive strength and height-diameter ratios of nine groups of soft rock samples

    图 5  红层软岩试样力学特征参数离散性分析

    Figure 5.  Discrete analysis of mechanical characteristic parameters of soft rock samples

    图 6  红层软岩试样离散度与高径比的关系

    Figure 6.  Relationship between dispersion parameter and height-diameter ratio of soft rock samples

    图 7  红层软岩缺陷RVE单元的提出

    Figure 7.  Proposal of RVE units for red-bed soft rock defects

    图 8  扩充前、后数据集分布特征

    Figure 8.  Dataset distribution characteristics before and after expansion

    图 9  技术流程图

    Figure 9.  Technical flowchart

    图 10  噪声强度敏感性分析

    Figure 10.  Sensitivity analysis of noise intensity

    图 11  网络结构对MLP模型的影响

    Figure 11.  Influence of network structure on MLP

    图 12  10折交叉验证的评估结果

    Figure 12.  10-fold cross-validation evaluation results

    图 13  采用SHAP法进行XGR全局模型解释

    Figure 13.  Global model explanation of XGR by SHAP method

    图 14  XGR模型局部解释力图

    Figure 14.  Local explanation force plot of XGR model

    图 15  XGR局部模型解释瀑布图

    Figure 15.  Local explanation waterfall plot of XGR model

    图 16  模型在其他岩类数据集上泛化能力评价

    Figure 16.  Evaluation of model generalization ability on other rock datasets

    图 17  采用SHAP方法对MLP模型进行局部解释

    Figure 17.  Local explanation of MLP by SHAP method

    表  1  红层软岩物理力学参数

    Table  1.   Physical and mechanical parameters of red-bed soft rock

    参数 取值范围
    孔隙比 e0 0.196~0.217
    颗粒密度 ds/(g•cm−3 2.639~2.643
    含水率 w/% 7.61~8.10
    崩解系数 Id/% 71.59~74.81
    单轴抗压强度 σP/MPa 8.84~10.65
    抗拉强度 σt/MPa 0.45~0.63
    纵波波速 νw/(km•s−1 2.59~2.71
    下载: 导出CSV

    表  2  因子共线性诊断

    Table  2.   Factor collinearity diagnosis

    影响因子 VIF 容忍度
    H/d 3.045 0.328
    $ {\varepsilon _{\text{P}}} $/% 3.454 0.290
    $ {E_{{\text{av}}}} $/GPa 1.426 0.701
    下载: 导出CSV

    表  3  实测值与插值数据统计参数

    Table  3.   Statistical parameters of measured and interpolated data

    指标 数据类型 H/d $ {\varepsilon _{\text{P}}} $/% $ {E_{{\text{av}}}} $/GPa $ {\sigma _{\text{P}}} $/MPa
    最大值 实测值 2.0 2.851 2.881 27.020
    插值 2.0* 2.724 2.787 26.913
    最小值 实测值 0.4 0.461 0.834 8.670
    插值 0.4* 0.472 1.055 8.843
    均值 实测值 1.2 1.277 1.623 14.426
    插值 1.2* 1.252 1.660 14.579
    标准差 实测值 0.5 0.615 0.532 5.374
    插值 0.5* 0.555 0.385 4.944
    注意:*表示插值中H/d统计参数没有变化,由于设置多组高径比相同的平行试验,线性插值不会显著影响统计指标.
    下载: 导出CSV

    表  4  各模型超参数设置

    Table  4.   Hyperparameter settings of each model

    模型 超参数名称 搜索空间 最优取值
    DTR ccp_alpha 0~0.5 0.1
    max_depth 1.00~15.00 6.00
    SVR C 0.1~100.0 100
    epsilon 0.01~0.50 0.5
    gamma 0.01~10.00 0.01
    RFR n_estimators 100~300 200
    max_depth 5~30 10
    min_samples_split 2~10 2
    min_samples_leaf 1~2 1
    XGR gamma 0~1 0
    learning_rate 0.01~0.50 0.1
    max_depth 3~7 3
    n_estimators 50~200 200
    alpha 0~1 0
    lambda 1~2 2
    subsample 0.5~1.0 0.5
    下载: 导出CSV

    表  5  模型预测结果

    Table  5.   Model prediction results

    模型 项目 R2 MMAE MMSE RRMSE
    DTR 训练集 0.996 0.203 0.084 0.289
    测试集 0.807 1.582 6.550 2.650
    SVR 训练集 0.988 0.142 0.278 0.528
    测试集 0.965 0.573 0.536 0.732
    MLP 训练集 0.949 0.787 1.098 1.048
    测试集 0.967 0.803 1.107 1.052
    RFR 训练集 0.981 0.371 0.399 0.632
    测试集 0.972 0.644 0.937 0.968
    XGR 训练集 0.992 0.204 0.169 0.411
    测试集 0.989 0.485 0.395 0.629
    下载: 导出CSV
  • [1] 吕龙龙, 廖红建, 伏映鹏, 等. 干湿状态对红层软岩脆延特性影响的试验研究[J]. 西安交通大学学报, 2021, 55(4): 162-171. doi: 10.7652/xjtuxb202104018

    LÜ Longlong, LIAO Hongjian, FU Yingpeng, et al. Experimental research on effects of dry and natural states on brittle-ductile transition property for red-bed soft rock[J]. Journal of Xi’an Jiaotong University, 2021, 55(4): 162-171. doi: 10.7652/xjtuxb202104018
    [2] 张俊云, 张乐, 高福洲, 等. 干湿循环下红层土石混合料强度及变形特性的试验研究[J]. 西南交通大学学报, 2023, 58(6): 1394-1404. doi: 10.3969/j.issn.0258-2724.20220343

    ZHANG Junyun, ZHANG Le, GAO Fuzhou, et al. Experimental study on strength and deformation characteristics of red-bed soil-rock mixture under wetting-drying cycles[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1394-1404. doi: 10.3969/j.issn.0258-2724.20220343
    [3] 和铭, 魏良帅, 贾逸, 等. 红层软岩膨胀力学特性试验研究[J]. 水利水电技术, 2019, 50(4): 171-178.

    HE Ming, WEI Liangshuai, JIA Yi, et al. Experimental study on expansive mechanical characteristics of red-bed soft rock[J]. Water Resources and Hydropower Engineering, 2019, 50(4): 171-178.
    [4] ZHANG G D, LING S X, LIAO Z X, et al. Mechanism and influence on red-bed soft rock disintegration durability of particle roughness based on experiment and fractal theory[J]. Construction and Building Materials, 2024, 419: 135504. doi: 10.1016/j.conbuildmat.2024.135504
    [5] 陈从新, 卢海峰, 袁从华, 等. 红层软岩变形特性试验研究[J]. 岩石力学与工程学报, 2010, 29(2): 261-270.

    CHEN Congxin, LU Haifeng, YUAN Conghua, et al. Experimental research on deformation propertities of red-bed soft rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 261-270.
    [6] 周翠英, 梁宁, 刘镇. 红层软岩压缩破坏的分形特征与级联失效过程[J]. 岩土力学, 2019, 40(增1): 21-31.

    ZHOU Cuiying, LIANG Ning, LIU Zhen. Fractal characteristics of compression failure of red soft rock and cascading failure process[J]. Rock and Soil Mechanics, 2019, 40(S1): 21-31.
    [7] 中华人民共和国住房和城乡建设部. 工程岩体试验方法标准: GB/T 50266—2013[S]. 北京: 中国计划出版社, 2013.
    [8] 江权, 崔洁, 冯夏庭, 等. 玄武岩力学参数的随机性统计与概率分布估计[J]. 岩土力学, 2017, 38(3): 784-792.

    JIANG Quan, CUI Jie, FENG Xiating, et al. Stochastic statistics and probability distribution estimation of mechanical parameters of basalt[J]. Rock and Soil Mechanics, 2017, 38(3): 784-792.
    [9] 杨同, 王宝学, 张磊. 非标准岩样室内力学试验的几种处理方法[J]. 中国矿业, 2007, 16(2): 87-89. doi: 10.3969/j.issn.1004-4051.2007.02.027

    YANG Tong, WANG Baoxue, ZHANG Lei. Several processing methods in indoor mechanics tests of the non-standard rock samples[J]. China Mining Magazine, 2007, 16(2): 87-89. doi: 10.3969/j.issn.1004-4051.2007.02.027
    [10] CHEN L, LIU T Y, JIA B X, et al. Acoustic emission and fractal characteristics of red beds soft rock under water-force coupling[J]. Scientific Reports, 2024, 14: 4424. doi: 10.1038/s41598-024-54814-2
    [11] 朱其志, 闵中泽, 王岩岩, 等. 粉砂岩三轴压缩试验中的试样尺寸效应研究[J]. 岩石力学与工程学报, 2019, 38(增2): 3296-3303.

    ZHU Qizhi, MIN Zhongze, WANG Yanyan, et al. Study on the size effect of silty sandstone samples under conventional triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3296-3303.
    [12] 侍倩, 曾亚武. 岩土力学实验[M]. 2版. 武汉: 武汉大学出版社, 2010.
    [13] 蔡美峰. 岩石力学与工程[M]. 2版. 北京: 科学出版社, 2013.
    [14] 杨圣奇, 苏承东, 徐卫亚. 岩石材料尺寸效应的试验和理论研究[J]. 工程力学, 2005, 22(4): 112-118. doi: 10.3969/j.issn.1000-4750.2005.04.022

    YANG Shengqi, SU Chengdong, XU Weiya. Experimental and theoretical study of size effect of rock material[J]. Engineering Mechanics, 2005, 22(4): 112-118. doi: 10.3969/j.issn.1000-4750.2005.04.022
    [15] 朱珍德, 邢福东, 王军, 等. 基于灰色理论的脆性岩石抗压强度尺寸效应试验研究[J]. 岩土力学, 2004, 25(8): 1234-1238.

    ZHU Zhende, XING Fudong, WANG Jun, et al. Experimental study on size effect on comperession strength of brittle rock based on grey theory[J]. Rock and Soil Mechanics, 2004, 25(8): 1234-1238.
    [16] 刘宝琛, 张家生, 杜奇中, 等. 岩石抗压强度的尺寸效应[J]. 岩石力学与工程学报, 1998, 17(6): 611-614. doi: 10.3321/j.issn:1000-6915.1998.06.001

    LIU Baochen, ZHANG Jiasheng, DU Qizhong, et al. A study of size effect for compression strength of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(6): 611-614. doi: 10.3321/j.issn:1000-6915.1998.06.001
    [17] HASHEMINEJAD M M, SOHANKAR N, HAJIANNIA A. Predicting the collapsibility potential of unsaturated soils using adaptive neural fuzzy inference system and particle swarm optimization[J]. Scientia Iranica, 2018, 25(6): 2980-2996.
    [18] TIE J H, MENG W Z, WEI M D, et al. Loading rate and mineralogical controls on tensile strength of rocks: a machine learning view[J]. Rock Mechanics and Rock Engineering, 2023, 56(8): 6119-6125. doi: 10.1007/s00603-023-03354-8
    [19] ZHANG P, YIN Z Y, JIN Y F, et al. A novel hybrid surrogate intelligent model for creep index prediction based on particle swarm optimization and random forest[J]. Engineering Geology, 2020, 265: 105328. doi: 10.1016/j.enggeo.2019.105328
    [20] 赵奎, 杨道学, 曾鹏, 等. 单轴压缩条件下花岗岩声学信号频域特征分析[J]. 岩土工程学报, 2020, 42(12): 2189-2197. doi: 10.11779/CJGE202012004

    ZHAO Kui, YANG Daoxue, ZENG Peng, et al. Frequency-domain characteristics of acoustic signals of granite under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2189-2197. doi: 10.11779/CJGE202012004
    [21] TOUPIN R A. Saint-venant’s principle[J]. Archive for Rational Mechanics and Analysis, 1965, 18(2): 83-96. doi: 10.1007/BF00282253
    [22] WITCZAK M, KALOUSH K, PENLLINEN T, et al. Simple performance test for superpave mix deesign[M]. Cambridge: Nation academy press, 2002.
    [23] ALBULAYHI K, ABU AL-HAIJA Q, ALSUHIBANY S A, et al. IoT intrusion detection using machine learning with a novel high performing feature selection method[J]. Applied Sciences, 2022, 12(10): 5015. doi: 10.3390/app12105015
    [24] 张林, 郭郑曦, 齐实, 等. 基于机器学习模型的高植被覆盖区浅层滑坡预测[J]. 农业工程学报, 2024, 40(17): 149-160.

    ZHANG Lin, GUO Zhengxi, QI Shi, et al. Predicting shallow landslides in highly vegetation-covered areas using machine learning models[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(17): 149-160.
    [25] ZHANG J R, NIU W J, YANG Y Z, et al. Machine learning prediction models for compressive strength of calcined sludge-cement composites[J]. Construction and Building Materials, 2022, 346: 128442. doi: 10.1016/j.conbuildmat.2022.128442
    [26] CZAJKOWSKI M, KRETOWSKI M. The role of decision tree representation in regression problems–An evolutionary perspective[J]. Applied Soft Computing, 2016, 48: 458-475. doi: 10.1016/j.asoc.2016.07.007
    [27] CAI R, HAN T H, LIAO W Y, et al. Prediction of surface chloride concentration of marine concrete using ensemble machine learning[J]. Cement and Concrete Research, 2020, 136: 106164. doi: 10.1016/j.cemconres.2020.106164
    [28] 郝建, 刘河清, 刘建康, 等. 基于振动信号的岩石单轴抗压强度钻进预测实验研究[J]. 岩石力学与工程学报, 2024, 43(6): 1406-1424.

    HAO Jian, LIU Heqing, LIU Jiankang, et al. Experimental study of rock uniaxial compressive strength prediction with drilling based on vibration signals[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(6): 1406-1424.
    [29] YANG Y R, YUAN Y, HAN Z, et al. Interpretability analysis for thermal sensation machine learning models: an exploration based on the SHAP approach[J]. Indoor Air, 2022, 32(2): e12984.
    [30] 张玉江, 邵珠娟, 袁红辉, 等. 不同高径比煤岩力学性能及破坏特征实验研究[J]. 中国矿业, 2020, 29(5): 110-114. doi: 10.12075/j.issn.1004-4051.2020.05.021

    ZHANG Yujiang, SHAO Zhujuan, YUAN Honghui, et al. Experimental study on mechanical properties and failure characteristics of coal rocks with different aspect ratios[J]. China Mining Magazine, 2020, 29(5): 110-114. doi: 10.12075/j.issn.1004-4051.2020.05.021
    [31] 贺桂成, 李玉兰, 丁德馨. 不同高径比石膏试样强度与尺寸效应的试验研究[J]. 地下空间与工程学报, 2016, 12(6): 1464-1470.

    HE Guicheng, LI Yulan, DING Dexin. Experimental investigation on strength and size effect of the gypsum sample in different height to diameter ratios[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(6): 1464-1470.
    [32] 陈瑜, 黄永恒, 曹平, 等. 不同高径比时软岩强度与变形尺寸效应试验研究[J]. 中南大学学报(自然科学版), 2010, 41(3): 1073-1078.

    CHEN Yu, HUANG Yongheng, CAO Ping, et al. Size effect experimental study of strength and deformation in different height-to-diameter ratio soft rocks[J]. Journal of Central South University (Science and Technology), 2010, 41(3): 1073-1078.
    [33] ZHANG C L, LI M J, YAN X, et al. Fracture process and failure characteristics of sandstone with different height-to-diameter ratios[J]. Processes, 2023, 11(11): 3069. doi: 10.3390/pr11113069
    [34] SU H J, JING H W, MAO X B, et al. Size effect of sandstone after high temperature under uniaxial compression[J]. Journal of Central South University, 2015, 22(5): 1901-1908. doi: 10.1007/s11771-015-2709-1
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  21
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-11
  • 修回日期:  2025-06-18
  • 网络出版日期:  2025-10-10

目录

    /

    返回文章
    返回