• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

车轮凹磨耦合作用下高速线路钢轨波磨安全限值研究

祁亚运 邹睿 戴焕云 陈兆玮 贺星 李良昫

祁亚运, 邹睿, 戴焕云, 陈兆玮, 贺星, 李良昫. 车轮凹磨耦合作用下高速线路钢轨波磨安全限值研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20250007
引用本文: 祁亚运, 邹睿, 戴焕云, 陈兆玮, 贺星, 李良昫. 车轮凹磨耦合作用下高速线路钢轨波磨安全限值研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20250007
QI Yayun, ZOU Rui, DAI Huanyun, CHEN Zhaowei, HE Xing, LI Liangxu. Study on Safety Threshold for Rail Corrugation in High-Speed Railway Lines Under Coupled Action of Wheel’s Concave Wear[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20250007
Citation: QI Yayun, ZOU Rui, DAI Huanyun, CHEN Zhaowei, HE Xing, LI Liangxu. Study on Safety Threshold for Rail Corrugation in High-Speed Railway Lines Under Coupled Action of Wheel’s Concave Wear[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20250007

车轮凹磨耦合作用下高速线路钢轨波磨安全限值研究

doi: 10.3969/j.issn.0258-2724.20250007
基金项目: 国家自然科学基金项目(U2268211,52302467);轨道交通运维技术与装备四川省重点实验室开放研究课题基(2024YW001);重庆市研究生联合培养基地项目(JDLHPYJD2024006)
详细信息
    作者简介:

    祁亚运(1990—),男,副教授,研究方向为轨道车辆动力学和轮轨磨耗,E-mail:yayun_qi@163.com

  • 中图分类号: U271.91

Study on Safety Threshold for Rail Corrugation in High-Speed Railway Lines Under Coupled Action of Wheel’s Concave Wear

  • 摘要:

    为探究钢轨波磨耦合车轮凹磨对高速列车轮轨系统动力学特性的影响,并确定高速铁路钢轨波磨的安全限值,基于车辆-轨道耦合动力学理论,结合现场调研获取的某线路钢轨波磨实测数据,构建CRH3型高速列车的车辆-轨道刚柔耦合动力学模型;将钢轨波磨和武广轨道谱叠加作为不平顺激励输入,探讨不同波长和波深的钢轨波磨对轮轨动力学特性的影响;探究不同运营里程的车轮凹磨与钢轨波磨的耦合作用,分析其对车辆各子系统振动加速度的影响,并在此基础上提出钢轨波磨安全限值. 研究结果表明:钢轨波磨显著增加轮轨垂向力,车轮凹磨和波磨耦合作用下进一步加大了轮轨力的响应,且凹磨越严重,轮轨力越大,运行20万公里的磨耗轮的轮轨垂向力相较于新轮增加了10.8%;考虑车轮凹磨,平均运行速度为300 km/h的高速列车建议50、80、100、120、150 mm钢轨波磨的波深安全限值为0.023、0.036、0.05、0.054、0.069 mm. 实际应用中,应结合具体运营条件和轨道结构调整维护策略,波深超出安全限值后应及时打磨.

     

  • 图 1  实测钢轨波磨

    Figure 1.  Measured rail corrugation

    图 2  实测钢轨表面不平顺

    Figure 2.  Measured rail surface irregularity

    图 3  实测钢轨通过频率

    Figure 3.  Measured rail passing frequency

    图 4  动力学模型

    Figure 4.  Dynamics model

    图 5  柔性轮轨部分模态

    Figure 5.  Part modes of flexible wheel-rail

    图 6  轴箱垂向加速度

    Figure 6.  Vertical acceleration of axle box

    图 7  钢轨波磨示意

    Figure 7.  Rail corrugation

    图 8  轮轨力响应

    Figure 8.  Wheel-rail force response

    图 9  不同波长和波深对轮轨力的影响

    Figure 9.  Influence of different wavelengths and wave depths on wheel-rail forces

    图 10  车轮凹磨廓形及临界速度变化

    Figure 10.  Wheel’s concave wear profile and critical speed change

    图 11  车轮凹磨耦合钢轨波磨对轮轨力的影响

    Figure 11.  Influence of wheel’s concave wear coupled with rail corrugation on wheel-rail forces

    图 12  车轮凹磨耦合波磨对车辆各子系统的振动响应影响

    Figure 12.  Influence of wheel’s concave wear coupled with rail corrugation on vibration response of vehicle subsystems

    图 13  钢轨波磨安全限值

    Figure 13.  Safety threshold of rail corrugation

    图 14  车轮凹磨耦合作用下钢轨波磨限值

    Figure 14.  Rail corrugation threshold under coupled action of wheel’s concave wear

    图 15  不同波长下钢轨波磨安全限值

    Figure 15.  Safety thresholds of rail corrugation at different wavelengths

    表  1  钢轨波磨通过频率

    Table  1.   Passing frequency of rail corrugation

    波长/mm 50 80 100 120 150
    频率/Hz 1666.7 1041.7 833.3 694.4 555.6
    下载: 导出CSV
  • [1] WEN Z F, JIN X S. Elastic-plastic finite-element analysis of repeated, two-dimensional wheel-rail rolling contact under time-dependent load[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2006, 220(5): 603-613. doi: 10.1243/09544062JMES201
    [2] 金学松, 李霞, 李伟, 等. 铁路钢轨波浪形磨损研究进展[J]. 西南交通大学学报, 2016, 51(2): 264-273.

    JIN Xuesong, LI Xia, LI Wei, et al. Review of rail corrugation progress[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 264-273.
    [3] 崔晓璐, 彭双千, 徐佳, 等. 钢轨波磨区段科隆蛋扣件弹条断裂机理[J]. 西南交通大学学报, 2025, 60(1): 205-213. doi: 10.3969/j.issn.0258-2724.20230025

    CUI Xiaolu, PENG Shuangqian, XU Jia, et al. Fracture mechanism of cologne-egg fastener clips in rail corrugation sections[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 205-213. doi: 10.3969/j.issn.0258-2724.20230025
    [4] 祁亚运, 李龙, 石怀龙, 等. 高寒动车组温变特性对运行性能的影响分析[J]. 西南交通大学学报, 2025, 60(2): 336-345.

    QI Yayun, LI Long, SHI Huailong, et al. Influence of temperature-varying characteristics on operating performance of alpine electric multiple units[J]. Journal of Southwest Jiaotong University, 2025, 60(2): 336-345.
    [5] 蒋忠辉, 赵国堂, 张合吉, 等. 车辆轨道关键参数对高速铁路钢轨波磨发展的影响[J]. 机械工程学报, 2018, 54(4): 57-63.

    JIANG Zhonghui, ZHAO Guotang, ZHANG Heji, et al. Effects of vehicle and track key parameters on the rail corrugation of high-speed railways[J]. Journal of Mechanical Engineering, 2018, 54(4): 57-63.
    [6] GRASSIE S L. Rail corrugation: characteristics, causes, and treatments[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2009, 223(6): 581-596. doi: 10.1243/09544097JRRT264
    [7] GRASSIE S L, KALOUSEK J. Rail corrugation: characteristics, causes and treatments[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1993, 207(1): 57-68. doi: 10.1243/PIME_PROC_1993_207_227_02
    [8] GRASSIE S L. Rail corrugation: advances in measurement, understanding and treatment[J]. Wear, 2005, 258(7/8): 1224-1234. doi: 10.1016/j.wear.2004.03.066
    [9] JIN X S, WANG K Y, WEN Z F, et al. Effect of rail corrugation on vertical dynamics of railway vehicle coupled with a track[J]. Acta Mechanica Sinica, 2005, 21(1): 95-102. doi: 10.1007/s10409-004-0010-x
    [10] JIN X S, WEN Z F, WANG K Y, et al. Three-dimensional train–track model for study of rail corrugation[J]. Journal of Sound and Vibration, 2006, 293(3/4/5): 830-855. doi: 10.1016/j.jsv.2005.12.013
    [11] 郭涛, 侯银庆, 胡晓依, 等. 钢轨波磨对高速车辆动力学性能的影响[J]. 铁道建筑, 2019, 59(3): 111-115. doi: 10.3969/j.issn.1003-1995.2019.03.28

    GUO Tao, HOU Yinqing, HU Xiaoyi, et al. Influences of rail corrugations on dynamic performances of high speed vehicles[J]. Railway Engineering, 2019, 59(3): 111-115. doi: 10.3969/j.issn.1003-1995.2019.03.28
    [12] 刘国云, 曾京, 张波. 钢轨波磨对高速车辆振动特性的影响[J]. 振动与冲击, 2019, 38(6): 137-143.

    LIU Guoyun, ZENG Jing, ZHANG Bo. Influence of rail corrugation on high-speed vehicle vibration performances[J]. Journal of Vibration and Shock, 2019, 38(6): 137-143.
    [13] MA C Z, GAO L, XIN T, et al. The dynamic resonance under multiple flexible wheelset-rail interactions and its influence on rail corrugation for high-speed railway[J]. Journal of Sound and Vibration, 2021, 498: 115968. doi: 10.1016/j.jsv.2021.115968
    [14] CUI X L, CHENG Z, YANG Z C, et al. Study on the phenomenon of rail corrugation on high-speed rail based on the friction-induced vibration and feedback vibration[J]. Vehicle System Dynamics, 2022, 60(2): 413-432. doi: 10.1080/00423114.2020.1817507
    [15] 祁亚运, 戴焕云, 干锋, 等. 基于车轮磨耗和舒适度的CRH3型动车组型面优化研究[J]. 振动与冲击, 2021, 40(18): 148-155.

    QI Yayun, DAI Huanyun, GAN Feng, et al. Wheel profile optimization of CRH3 type of EMU based on wheel wear and passenger comfort[J]. Journal of Vibration and Shock, 2021, 40(18): 148-155.
    [16] 祁亚运, 戴焕云, 干锋. 高速列车车轮型面多目标优化研究[J]. 机械工程学报, 2022, 58(24): 188-197.

    QI Yayun, DAI Huanyun, GAN Feng. Optimization of wheel profiles for high-speed trains[J]. Journal of Mechanical Engineering, 2022, 58(24): 188-197.
    [17] 施以旋, 戴焕云, 毛庆洲, 等. 基于车轨耦合的地铁车轮多边形形成机理[J]. 西南交通大学学报, 2024, 59(6): 1357-1367, 1388.

    SHI Yixuan, DAI Huanyun, MAO Qingzhou, et al. Formation mechanism of metro wheel polygonal based on vehicle-track coupling[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1357-1367,1388.
    [18] 祁亚运, 戴焕云, 干锋, 等. 高速动车组车轮偏磨影响因素与限值研究[J]. 表面技术, 2023, 52(5): 51-60.

    QI Yayun, DAI Huanyun, GAN Feng, et al. Influencing factors and limits of asymmetrical wheel wear of high-speed EMUs[J]. Surface Technology, 2023, 52(5): 51-60.
    [19] 林凤涛, 贾喆, 翁涛涛, 等. 车轮凹磨特征指数对车辆运行性能影响分析[J]. 铁道科学与工程学报, 2023, 20(6): 1994-2003.

    LIN Fengtao, JIA Zhe, WENG Taotao, et al. Analysis of the impact of wheel recess characteristic index on vehicle running performance[J]. Journal of Railway Science and Engineering, 2023, 20(6): 1994-2003.
    [20] 王晨, 罗世辉, 许自强, 等. 高速动车组构架横向失稳问题仿真分析与试验验证[J]. 铁道学报, 2021, 43(1): 39-48. doi: 10.3969/j.issn.1001-8360.2021.01.005

    WANG Chen, LUO Shihui, XU Ziqiang, et al. Simulation analysis and field test verification of lateral instability of high-speed EMU framework[J]. Journal of the China Railway Society, 2021, 43(1): 39-48. doi: 10.3969/j.issn.1001-8360.2021.01.005
    [21] 祁亚运, 戴焕云, 桑虎堂, 等. 高速动车组抗蛇行减振器参数优化研究[J]. 振动工程学报, 2023, 36(5): 1326-1334. doi: 10.16385/j.cnki.issn.1004-4523.2023.05.017

    QI Yayun, DAI Huanyun, SANG Hutang, et al. Optimization study of anti-yaw damper parameters for high-speed EMUs[J]. Journal of Vibration Engineering, 2023, 36(5): 1326-1334. doi: 10.16385/j.cnki.issn.1004-4523.2023.05.017
    [22] 祁亚运, 戴焕云, 吴昊, 等. 高速动车组转向架蛇行状态下的车轮磨耗分析[J]. 振动与冲击, 2023, 42(7): 38-45, 76. doi: 10.13465/j.cnki.jvs.2023.07.006

    QI Yayun, DAI Huanyun, WU Hao, et al. Wheel wear analysis of high-speed EMUs under bogie hunting[J]. Journal of Vibration and Shock, 2023, 42(7): 38-45,76. doi: 10.13465/j.cnki.jvs.2023.07.006
    [23] 张鹏飞, 姚典, 冯青松, 等. 地铁波磨对轮轨动力特性影响及其安全阈值分析[J]. 振动与冲击, 2022, 41(5): 123-130, 150. doi: 10.13465/j.cnki.jvs.2022.05.017

    ZHANG Pengfei, YAO Dian, FENG Qingsong, et al. Effects of metro rail corrugation on wheel-track system dynamic characteristics and its wave depth safety threshold[J]. Journal of Vibration and Shock, 2022, 41(5): 123-130,150. doi: 10.13465/j.cnki.jvs.2022.05.017
    [24] 谷永磊, 赵国堂, 金学松, 等. 高速铁路钢轨波磨对车辆—轨道动态响应的影响[J]. 中国铁道科学, 2015, 36(4): 27-31.

    GU Yonglei, ZHAO Guotang, JIN Xuesong, et al. Effects of rail corrugation of high speed railway on vehicle-track coupling dynamic response[J]. China Railway Science, 2015, 36(4): 27-31.
    [25] 姜子清, 司道林, 李伟, 等. 高速铁路钢轨波磨研究[J]. 中国铁道科学, 2014, 35(4): 9-14.

    JIANG Ziqing, SI Daolin, LI Wei, et al. On rail corrugation of high speed railway[J]. China Railway Science, 2014, 35(4): 9-14
    [26] 朱海燕, 袁遥, 肖乾, 等. 钢轨波磨研究进展[J]. 交通运输工程学报, 2021, 21(3): 110-133.

    ZHU Haiyan, YUAN Yao, XIAO Qian, et al. Research progress on rail corrugation[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 110-133.
    [27] 国家铁路局. 机车车辆动力学性能评定及试验鉴定规范: GB/T 5599—2019 [S]. 北京: 中国国家标准化管理委员会, 2019.
    [28] 中华人民共和国铁道部. 高速铁路工程动态验收技术规范: TB 10761—2013[S]. 北京: 中国铁道出版社, 2018
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  10
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-10
  • 修回日期:  2025-04-17
  • 网络出版日期:  2026-01-15

目录

    /

    返回文章
    返回