• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于行车性能的铁路连续钢桁梁桥成桥线形控制技术研究

李小珍 张竞元 黄文泰 王铭

李小珍, 张竞元, 黄文泰, 王铭. 基于行车性能的铁路连续钢桁梁桥成桥线形控制技术研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240654
引用本文: 李小珍, 张竞元, 黄文泰, 王铭. 基于行车性能的铁路连续钢桁梁桥成桥线形控制技术研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240654
LI Xiaozhen, ZHANG Jingyuan, HUANG Wentai, WANG Ming. Research on Completed Bridge Alignment Control Technology of Continuous Steel Truss Railway Girder Bridge Based on Driving Performance[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240654
Citation: LI Xiaozhen, ZHANG Jingyuan, HUANG Wentai, WANG Ming. Research on Completed Bridge Alignment Control Technology of Continuous Steel Truss Railway Girder Bridge Based on Driving Performance[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240654

基于行车性能的铁路连续钢桁梁桥成桥线形控制技术研究

doi: 10.3969/j.issn.0258-2724.20240654
基金项目: 国家自然科学基金项目(52208505);国铁集团科技研究开发计划重点课题(N2022G066)
详细信息
    作者简介:

    李小珍(1970—),男,教授,博士,研究方向为车桥耦合振动、铁路桥梁减振降噪,E-mail:xzhli@swjtu.edu.cn

    通讯作者:

    王铭(1989—),男,助理研究员,博士,研究方向为风-车-桥耦合振动、大跨桥轨道平顺性,E-mail: ming.wang@swjtu.edu.cn

  • 中图分类号: U448.13

Research on Completed Bridge Alignment Control Technology of Continuous Steel Truss Railway Girder Bridge Based on Driving Performance

  • 摘要:

    为了满足铁路桥梁行车性能的需求,需要控制其成桥线形的平顺性. 基于行车平稳性分析,确定车体敏感波长的范围,并将其成桥线形幅值作为评价指标;从保证行车性能角度出发,结合无砟轨道自身调节能力、轨面线形与成桥线形的关系,推导出成桥线形不平顺限值表达式;以某七跨连续钢桁梁桥为研究对象,根据推导的表达式控制车体敏感波长范围内的成桥线形不平顺幅值;组合Akima样条曲线和主梁拼装曲线,提出一种基于成桥目标线形的主梁拼装线形平顺性控制方法. 研究结果表明:列车行驶速度250~350 km/h时,车体敏感波长均小于200 m;以某七跨连续钢桁梁桥为例,速度350、300、250 km/h对应车体敏感波长范围内,成桥线形不平顺限值分别为24、26、29 mm;通过提出的控制主梁拼装线形平顺性方法,能够对主梁拼装线形中0~200 m波长范围内的不平顺幅值进行评价和控制.

     

  • 图 1  7跨连续梁桥成桥与设计高程曲线

    Figure 1.  Elevation curves of completed bridge and design for seven-span continuous girder bridge

    图 2  主桥布置示意

    Figure 2.  Main bridge layout

    图 3  车体竖向振动加速度功率谱

    Figure 3.  Power spectrum of vertical vibration acceleration of vehicle body

    图 4  不同波长范围内成桥线形成分

    Figure 4.  Compositions of completed bridge alignment in different wavelength ranges

    图 5  车体加速度叠加示例

    Figure 5.  Example of acceleration superposition of vehicle body

    图 6  允许的成桥线形幅值和轨面线形幅值对应关系

    Figure 6.  Corresponding relationship between permissible completed bridge alignment amplitudes and track surface alignment amplitudes

    图 7  无砟轨道谱激励下车体垂向加速度

    Figure 7.  Vertical acceleration of vehicle body under excitation of ballastless track spectrum

    图 8  不同车速下长波变形引起的车体垂向加速度

    Figure 8.  Vertical acceleration of vehicle body due to long-wave deformation at different vehicle speeds

    图 9  不同温度荷载下桥梁变形

    Figure 9.  Bridge deformation under different temperature loads

    图 10  主梁拼装区段40 m时虚拟成桥曲线

    Figure 10.  Virtual completed bridge curves at 40 m of girder assembly section

    图 11  第1次评估时200 m滤波后的不平顺幅值

    Figure 11.  Irregularity amplitudes after 200 m filtering at the first evaluation

    图 12  主梁拼装区段80 m时虚拟成桥曲线

    Figure 12.  Virtual completed bridge curves at 80 m of girder assembly section

    图 13  第2次评估时200 m滤波后不平顺幅值

    Figure 13.  Irregularity amplitudes after 200 m filtering at the second evaluation

    图 14  主梁拼装区段120 m时虚拟成桥曲线

    Figure 14.  Virtual completed bridge curves at 120 m of girder assembly section

    图 15  第3次评估时200 m滤波后不平顺幅值

    Figure 15.  Irregularity amplitudes after 200 m filtering at the third evaluation

    表  1  不同工况下CRH3列车车体竖向加速度

    Table  1.   Vertical acceleration of CRH3 train in different working conditions

    工况 350 km/h 300 km/h 250 km/h
    整体升温20 ℃ 0.89 0.79 0.68
    整体降温20 ℃ 0.88 0.78 0.67
    整体升温10 ℃ 0.84 0.74 0.63
    整体降温10 ℃ 0.84 0.74 0.64
    原始 0.76 0.67 0.57
    下载: 导出CSV

    表  2  各项竖向车体加速度汇总表

    Table  2.   Summary of various vertical acceleration of vehicle body

    车速/(km·h−1 a1 a2 a3 a
    350 0.68 0.0536 0.13 0.4364
    300 0.56 0.0426 0.12 0.5774
    250 0.48 0.0336 0.11 0.6764
    下载: 导出CSV

    表  3  主梁拼装区段40 m时虚拟实测线形不平顺与虚拟线形不平顺绝对最大值

    Table  3.   Absolute maximum values of virtual measured alignment irregularities and virtual alignment irregularities at 40 m of girder assembly section mm

    不平顺
    位置
    成桥曲线/mm虚拟成桥曲线/mm误差/%
    2#墩−13.6−14.02.8
    3#墩−14.9−15.96.2
    4#墩−16.6−15.84.8
    5#墩−16.2−17.04.7
    6#墩−17.8−17.32.8
    7#墩−20.3−20.92.4
    下载: 导出CSV

    表  4  主梁拼装区段80 m时虚拟实测线形不平顺与虚拟线形不平顺绝对最大值

    Table  4.   Absolute maximum values of virtual measured alignment irregularities and virtual alignment irregularities at 80 m of girder assembly section

    不平顺
    位置
    成桥曲线/mm虚拟成桥曲线/mm误差/%
    2#墩−13.6−14.13.5
    3#墩−14.9−14.90
    4#墩−16.6−16.31.8
    5#墩−16.2−16.20.0
    6#墩−17.8−17.32.9
    7#墩−20.3−20.20.5
    下载: 导出CSV

    表  5  主梁拼装区段120 m时虚拟实测线形不平顺与虚拟线形不平顺绝对最大值

    Table  5.   Absolute maximum values of virtual measured alignment irregularities and virtual alignment irregularities at 120 m of girder assembly section

    不平顺
    位置
    成桥曲线/mm虚拟成桥曲线/mm误差/%
    2#墩−13.6−13.92.2
    3#墩−14.9−14.90
    4#墩−16.6−16.31.8
    5#墩−16.2−16.01.3
    6#墩−17.8−17.61.1
    7#墩−20.3−20.20.5
    下载: 导出CSV
  • [1] 李铭伟, 刘凯, 张上, 等. 高铁大跨度长联连续钢桥铺设无砟轨道的适应性[J]. 铁道建筑, 2024, 64(8): 84-88. doi: 10.3969/j.issn.1003-1995.2024.08.16

    LI Mingwei, LIU Kai, ZHANG Shang, et al. Adaptability of laying ballastless track on long-span continuous steel bridge of high speed railway[J]. Railway Engineering, 2024, 64(8): 84-88. doi: 10.3969/j.issn.1003-1995.2024.08.16
    [2] 王同军, 蒋辉, 尤明熙, 等. 基于模数驱动的高速铁路线路设备状态检测评估技术与实践[J]. 铁道运输与经济, 2024, 46(9): 1-14. doi: 10.16668/j.cnki.issn.1003-1421.2024.09.01

    WANG Tongjun, JIANG Hui, YOU Mingxi, et al. Practice of high speed railway line equipment state detection and assessment technology driven by modulus[J]. Railway Transport and Economy, 2024, 46(9): 1-14. doi: 10.16668/j.cnki.issn.1003-1421.2024.09.01
    [3] 王平, 高天赐, 汪鑫, 等. 基于拟合平纵断面的铁路特大桥梁线路平顺性评估[J]. 西南交通大学学报, 2020, 55(2): 231-237, 272. doi: 10.3969/j.issn.0258-2724.20180295

    WANG Ping, GAO Tianci, WANG Xin, et al. Smoothness estimation of super-large bridges in railway line based on fitting railway plane and profile[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 231-237,272. doi: 10.3969/j.issn.0258-2724.20180295
    [4] 孙宗磊, 张上, 刘凯, 等. 雄商高铁黄河特大桥主桥桥型方案比选[J]. 桥梁建设, 2023, 53(5): 118-124. doi: 10.20051/j.issn.1003-4722.2023.05.016

    SUN Zonglei, ZHANG Shang, LIU Kai, et al. Main bridge type selection for a Huanghe River bridge of Xiongan-Shangqiu high-speed railway[J]. Bridge Construction, 2023, 53(5): 118-124. doi: 10.20051/j.issn.1003-4722.2023.05.016
    [5] 杨东. 考虑施工不确定性的大跨高速铁路桥梁线形控制研究[J]. 铁道建筑技术, 2024(4): 145-147, 186. doi: 10.3969/j.issn.1009-4539.2024.04.033

    YANG Dong. Research on alignment control of long-span high-speed railway bridge considering construction uncertainty[J]. Railway Construction Technology, 2024(4): 145-147,186. doi: 10.3969/j.issn.1009-4539.2024.04.033
    [6] 杨玉龙. 跨铁路悬灌预应力混凝土T构转体关键技术研究[D]. 成都: 西南交通大学, 2021.
    [7] 禹壮壮, 舒英杰, 陆粤, 等. 基于成桥施工偏差的大跨度铁路桥梁线路纵断面设计适应性分析[J]. 铁道标准设计, 2023, 67(3): 61-67, 73. doi: 10.13238/j.issn.1004-2954.202110110004

    YU Zhuangzhuang, SHU Yingjie, LU Yue, et al. Design adaptability analysis of the route longitudinal section on long-span railway bridge based on construction deviation[J]. Railway Standard Design, 2023, 67(3): 61-67,73. doi: 10.13238/j.issn.1004-2954.202110110004
    [8] 陈增顺. 大跨轨道斜拉桥合理线形控制关键技术研究[D]. 重庆: 重庆交通大学, 2014.
    [9] 苑仁安, 张明金, 郑清刚, 等. 超大跨斜拉桥横桥向恒载非对称力学行为[J]. 西南交通大学学报, 2023, 58(3): 527-534. doi: 10.3969/j.issn.0258-2724.20210279

    YUAN Ren’an ZHANG Mingjin, ZHENG Qinggang, et al. Mechanical characteristics of super-long-span cable-stayed bridge with transverse asymmetrical load[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 527-534. doi: 10.3969/j.issn.0258-2724.20210279
    [10] 刘来君, 贺拴海, 宋一凡. 大跨径桥梁施工控制温度应力分析[J]. 中国公路学报, 2004, 17(1): 53-56. doi: 10.3321/j.issn:1001-7372.2004.01.012

    LIU Laijun, HE Shuanhai, SONG Yifan. Analysis of temperature stress in control of long-span bridge construction[J]. China Journal of Highway and Transport, 2004, 17(1): 53-56. doi: 10.3321/j.issn:1001-7372.2004.01.012
    [11] 陆粤, 王铭, 陈嵘, 等. 基于行车平稳性的大跨度铁路桥梁成桥线形评价方法研究[J]. 铁道标准设计, 2024, 68(6): 44-51. doi: 10.13238/j.issn.1004-2954.202210180008

    LU Yue, WANG Ming, CHEN Rong, et al. Research on evaluation method of completed bridge alignment of long-span railway bridges based on riding quality[J]. Railway Standard Design, 2024, 68(6): 44-51. doi: 10.13238/j.issn.1004-2954.202210180008
    [12] 单德山, 董皓, 顾晓宇. 大跨度斜拉桥施工控制的多元统计敏感性分析[J]. 中国公路学报, 2021, 34(12): 68-79. doi: 10.3969/j.issn.1001-7372.2021.12.006

    SHAN Deshan, DONG Hao, GU Xiaoyu. Multivariate statistical sensitivity analysis for construction control of long-span cable-stayed bridges[J]. China Journal of Highway and Transport, 2021, 34(12): 68-79. doi: 10.3969/j.issn.1001-7372.2021.12.006
    [13] LI Q F, XIE J H. Bridge alignment prediction based on combination of grey model and BP neural network[J]. Applied Sciences, 2024, 14(17): 7955. doi: 10.3390/app14177955
    [14] LI X G, HUANG X S, DING P, et al. Study on the effect of temperature on the alignment of a long-span steel–concrete composite beam track cable-stayed bridge[J]. Applied Sciences, 2024, 14(22): 10688. doi: 10.3390/app142210688
    [15] 李国龙, 孙宪夫, 高彦嵩, 等. 基于实车试验的大跨度桥梁轨道静态长波高低不平顺验收标准验证[J]. 铁道学报, 2024, 46(1): 120-128.

    LI Guolong, SUN Xianfu, GAO Yansong, et al. Verification on acceptance standard for track static long-wave longitudinal level irregularity on long-span bridge based on real train test[J]. Journal of the China Railway Society, 2024, 46(1): 120-128.
    [16] 陈林峰. 大跨度变截面曲线钢箱梁悬拼施工线形控制方法研究[D]. 重庆: 重庆交通大学, 2024.
    [17] 舒英杰. 大跨度桥上轨道长波不平顺评价及线形优化方法研究[D]. 成都: 西南交通大学, 2023.
    [18] 杨飞, 郝晓莉, 杨建, 等. 基于多车型CNN-GRU性能预测模型的轨道状态评价[J]. 西南交通大学学报, 2023, 58(2): 322-331. doi: 10.3969/j.issn.0258-2724.20211030

    YANG Fei, HAO Xiaoli, YANG Jian, et al. Track condition evaluation for multi-vehicle performance prediction model based on convolutional neural network and gated recurrent unit[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 322-331. doi: 10.3969/j.issn.0258-2724.20211030
    [19] 王铭, 李星星, 李小珍. 基于频域分析的高速列车侧风倾覆机理[J]. 西南交通大学学报, 2024, 59(2): 315-322, 342. doi: 10.3969/j.issn.0258-2724.20210571

    WANG Ming, LI Xingxing, LI Xiaozhen. Mechanism of high-speed train crosswind overturning stability based on frequency domain analysis[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 315-322,342. doi: 10.3969/j.issn.0258-2724.20210571
    [20] ZHANG J F, ZHU Z X, ZHU X Y, et al. Study on the influence of uneven settlement and small curve radius on metro train running safety and riding comfort[J]. Structures, 2023, 51: 1806-1820. doi: 10.1016/j.istruc.2023.03.094
    [21] 马卓然. 基于轨道几何和车辆响应检测数据的无砟轨道上拱识别评估方法[D]. 北京: 北京交通大学, 2023.
    [22] 国家铁路局. 铁路轨道设计规范: TB 10082—2017[S]. 北京: 中国铁道出版社, 2017.
    [23] 国家铁路局. 铁路桥涵设计规范: TB 10002—2017[S]. 北京: 中国铁道出版社, 2017.
    [24] LI X Z, HE H N, WANG M, et al. Influence of long-span bridge deformation on driving quality of high-speed trains[J]. International Journal of Rail Transportation, 2024, 12(4): 690-708. doi: 10.1080/23248378.2023.2198532
    [25] 王心怡. 基于行车性能的大跨度铁路悬索桥局部刚度限值研究[D]. 成都: 西南交通大学, 2023.
    [26] 孟令强, 郭传臣, 姜永彪. 大跨长联公铁两用连续钢桁梁桥成桥阶段温度效应研究[J]. 世界桥梁, 2023, 51(4): 77-84. doi: 10.20052/j.issn.1671-7767.2023.04.012

    MENG Lingqiang, GUO Chuanchen, JIANG Yongbiao. Thermal effect on continuous steel truss girder rail-cum-road bridge with long spans and units after completion[J]. World Bridges, 2023, 51(4): 77-84. doi: 10.20052/j.issn.1671-7767.2023.04.012
    [27] 中华人民共和国铁道部. 高速铁路无砟轨道线路维修规则(试行): TG/GW 115-2012[S]. 北京: 中国铁道出版社, 2012.
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  4
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-16
  • 网络出版日期:  2026-01-20

目录

    /

    返回文章
    返回