• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

循环荷载作用下超高性能纤维混凝土自感知性能

周中一 赵宏升 刘岩 陈建伟 张文明 洪雅妮

周中一, 赵宏升, 刘岩, 陈建伟, 张文明, 洪雅妮. 循环荷载作用下超高性能纤维混凝土自感知性能[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240649
引用本文: 周中一, 赵宏升, 刘岩, 陈建伟, 张文明, 洪雅妮. 循环荷载作用下超高性能纤维混凝土自感知性能[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240649
ZHOU Zhongyi, ZHAO Hongsheng, LIU Yan, CHEN Jianwei, ZHANG Wenming, HONG Yani. Self-Sensing Performance of Ultra-High Performance Fiber-Reinforced Concrete Under Cyclic Loading[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240649
Citation: ZHOU Zhongyi, ZHAO Hongsheng, LIU Yan, CHEN Jianwei, ZHANG Wenming, HONG Yani. Self-Sensing Performance of Ultra-High Performance Fiber-Reinforced Concrete Under Cyclic Loading[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240649

循环荷载作用下超高性能纤维混凝土自感知性能

doi: 10.3969/j.issn.0258-2724.20240649
基金项目: 国家重点研发计划(2022YFF0608904)
详细信息
    作者简介:

    周中一(1980—),男,研究员,博士,研究方向为工程结构抗震,E-mail:zhouzy@iem.ac.cn

  • 中图分类号: TU528;TB333

Self-Sensing Performance of Ultra-High Performance Fiber-Reinforced Concrete Under Cyclic Loading

  • 摘要:

    为研究复掺钢纤维和多壁碳纳米管(MWCNTs)的超高性能混凝土(UHPC)在不同循环应力幅值下的自感知性能,对钢纤维体积掺量为2%、不同MWCNTs掺量下的UHPC在不同循环应力幅值下的自感知性能进行试验研究. 结果表明:UHPC的初始电阻率随MWCNTs掺量的增加先升高后降低,加入0.15%的MWCNTs能提高UHPC的导电性;MWCNTs的加入可以提高试样的重复性,当MWCNTs掺量为0.15%时,试样具有最优的重复性,重复性系数为0.019,且交流电阻变化率与应力之间具有较优的线性关系,线性度为0.97;试样 UHPC0、UHPC0.05的应力灵敏度和应变灵敏度随应力的增加先增加后减小,而试样UHPC0.1、UHPC0.15的应力灵敏度和应变灵敏度则随着应力的增加呈逐渐减小的趋势;试样UHPC0.15在不同循环应力幅值下最高应变灵敏度和应力灵敏度分别为71.6%和0.16%/MPa,均出现在应力为10 MPa时;当MWCNTs掺量为0.15%时,UHPC具有最优的自感知性能.

     

  • 图 1  水泥、石英粉和硅灰的筛分曲线

    Figure 1.  Sieving curves of cement, quartz powder, and silica fume

    图 2  原材料SEM图

    Figure 2.  SEM images of raw materials

    图 3  电极在试样中的位置

    Figure 3.  Position of electrode in sample

    图 4  铜网电极

    Figure 4.  Copper mesh electrodes

    图 5  实验设备和采集仪器

    Figure 5.  Experimental equipment and acquisition instruments

    图 6  UHPC流动度测量结果

    Figure 6.  Fluidity measurement results of UHPC

    图 7  抗压强度和初始电阻率测量结果

    Figure 7.  Compressive strength and initial resistivity test results

    图 8  不同循环压缩加载幅值下试样的交流电阻变化率与应力/应变的响应曲线

    Figure 8.  AC resistance rate of change and response curves of stress/strain of sample under different cyclic compressive loading amplitudes

    图 9  不同MWCNTs掺量下UHPC的重复性系数

    Figure 9.  Repeatability coefficient of UHPC under different MWCNT contents

    图 10  不同MWCNTs掺量下的UHPC的线性度

    Figure 10.  Linearity of UHPC at different MWCNT contents

    图 11  不同MWCNTs掺量下的UHPC的应变/应力灵敏度

    Figure 11.  Strain/stress sensitivity of UHPC under different MWCNT contents

    表  1  水泥、硅灰和石英粉的化学组成

    Table  1.   Chemical composition of cement, silica fume, and quartz powder (Mass fraction)

    材料类型 化学成分/% 表面积/(m2·g−1
    Al2O3 SiO2 CaO TiO2 MgO Na2O K2O Fe2O3 SO3 L.O.I.
    水泥 5.02 19.99 64.47 0.21 1.64 0.21 0.72 2.99 2.82 2.0774
    硅灰 0.15 95.15 0.34 0.02 0.49 0.27 0.58 0.08 0.21 2.51 28.3000
    石英粉 0.03 99.81 0.02 0.01 0.01 0.019 0.06 0.8445
    下载: 导出CSV

    表  2  MWCNTs物理参数

    Table  2.   Physical properties of MWCNTs

    名称 外径/nm 长度/μm 表面积/(m2•g−1 纯度/% 颜色
    取值 5~15 10~30 220~300 >99 黑色
    下载: 导出CSV

    表  3  钢纤维力学性能

    Table  3.   Mechanical properties of steel fibers

    名称 长度/
    mm
    直径/
    μm
    抗拉强
    度/MPa
    弹性模
    量/GPa
    密度/
    (g•cm−3
    取值 13 200 2750 210 7.85
    下载: 导出CSV

    表  4  UHPC配合比

    Table  4.   Mix proportions of UHPC kg/m3

    试件
    编号
    单位重量
    水泥 硅灰 石英粉 减水剂 钢纤维 碳纳米管
    UHPC0 890 220 980 199.8 55 165 0
    UHPC0.05 890 220 980 199.8 55 165 0.445
    UHPC0.1 890 220 980 199.8 55 165 0.89
    UHPC0.15 890 220 980 199.8 55 165 1.335
    下载: 导出CSV

    表  5  试样的综合评价指标(归一化)

    Table  5.   Comprehensive evaluation index of samples (normalization)

    试样编号 Gε Gσ r L S
    UHPC0 1.00 1.00 0 0.29 0.629
    UHPC0.05 0 0 0.45 1.00 0.235
    UHPC0.10 0.17 0.03 0.83 0 0.309
    UHPC0.15 0.81 0.54 1.00 0.59 0.764
    下载: 导出CSV
  • [1] YOO D Y, BANTHIA N. Mechanical properties of ultra-high-performance fiber-reinforced concrete: a review[J]. Cement and Concrete Composites, 2016, 73: 267-280. doi: 10.1016/j.cemconcomp.2016.08.001
    [2] HE B, ZHU X P, REN Q, et al. Effects of fibers on flexural strength of ultra-high-performance concrete subjected to cryogenic attack[J]. Construction and Building Materials, 2020, 265: 120323.1-120323.8.
    [3] GOMAA E, GHENI A, ELGAWADY M A. Repair of ordinary Portland cement concrete using ambient-cured alkali-activated concrete: interfacial behavior[J]. Cement and Concrete Research, 2020, 129: 105968.1-105968.17.
    [4] WANG Y S, PENG K D, ALREFAEI Y, et al. The bond between geopolymer repair mortars and OPC concrete substrate: Strength and microscopic interactions[J]. Cement and Concrete Composites, 2021, 119: 103991.1-103991.12.
    [5] TAYEH B A, ABU BAKAR B H, MEGAT JOHARI M A, et al. Utilization of ultra-high performance fibre concrete (UHPFC) for rehabilitation—a review[J]. Procedia Engineering, 2013, 54: 525-538. doi: 10.1016/j.proeng.2013.03.048
    [6] TAHERI S. A review on five key sensors for monitoring of concrete structures[J]. Construction and Building Materials, 2019, 204: 492-509. doi: 10.1016/j.conbuildmat.2019.01.172
    [7] BAE Y, PYO S. Effect of steel fiber content on structural and electrical properties of ultra high performance concrete (UHPC) sleepers[J]. Engineering Structures, 2020, 222: 111131. doi: 10.1016/j.engstruct.2020.111131
    [8] YOO D Y, YOON Y S. A review on structural behavior, design, and application of ultra-high-performance fiber-reinforced concrete[J]. International Journal of Concrete Structures and Materials, 2016, 10(2): 125-142. doi: 10.1007/s40069-016-0143-x
    [9] YOO D Y, KIM S, LEE S H. Self-sensing capability of ultra-high-performance concrete containing steel fibers and carbon nanotubes under tension[J]. Sensors and Actuators A: Physical, 2018, 276: 125-136. doi: 10.1016/j.sna.2018.04.009
    [10] SUN M Q, LIEW R J Y, ZHANG M H, et al. Development of cement-based strain sensor for health monitoring of ultra high strength concrete[J]. Construction and Building Materials, 2014, 65: 630-637. doi: 10.1016/j.conbuildmat.2014.04.105
    [11] DONG S F, HAN B G, OU J P, et al. Electrically conductive behaviors and mechanisms of short-cut super-fine stainless wire reinforced reactive powder concrete[J]. Cement and Concrete Composites, 2016, 72: 48-65. doi: 10.1016/j.cemconcomp.2016.05.022
    [12] KIM M K, KIM D J, AN Y K. Electro-mechanical self-sensing response of ultra-high-performance fiber-reinforced concrete in tension[J]. Composites Part B: Engineering, 2018, 134: 254-264. doi: 10.1016/j.compositesb.2017.09.061
    [13] YOU I, YOO D Y, KIM S, et al. Electrical and self-sensing properties of ultra-high-performance fiber-reinforced concrete with carbon nanotubes[J]. Sensors, 2017, 17(11): 2481.1-2481.19.
    [14] LEE S H, KIM S, YOO D Y. Hybrid effects of steel fiber and carbon nanotube on self-sensing capability of ultra-high-performance concrete[J]. Construction and Building Materials, 2018, 185: 530-544. doi: 10.1016/j.conbuildmat.2018.07.071
    [15] DONG S F, DONG X F, ASHOUR A, et al. Fracture and self-sensing characteristics of super-fine stainless wire reinforced reactive powder concrete[J]. Cement and Concrete Composites, 2020, 105: 103427.1-103427.15.
    [16] SONG F C, CHEN Q, ZHENG Q M. Multifunctional ultra-high performance fibre-reinforced concrete with integrated self-sensing and repair capabilities towards in situ structure monitoring[J]. Composite Structures, 2023, 321: 117240.1-117240.17.
    [17] SONG F C, CHEN Q, JIANG Z W, et al. Piezoresistive properties of ultra-high-performance fiber-reinforced concrete incorporating few-layer graphene[J]. Construction and Building Materials, 2021, 305: 124362.1-124362.14.
    [18] LE H V, KIM M K, KIM S U, et al. Enhancing self-stress sensing ability of smart ultra-high performance concretes under compression by using nano functional fillers[J]. Journal of Building Engineering, 2021, 44: 102717.1-102717.14.
    [19] ASTM International. Standard test method for flow of hydraulic cement mortar: ASTM C1437[S]. West Conshohocken: ASTM International, 2015.
    [20] ASTM International. Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens): ASTM C109/C109M-21[S]. West Conshohocken: ASTM International, 2021.
    [21] AZHARI F, BANTHIA N. Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing[J]. Cement and Concrete Composites, 2012, 34(7): 866-873. doi: 10.1016/j.cemconcomp.2012.04.007
    [22] PELED A, T ORRENTSJ M, MASON T, et al. Electrical impedance spectra to monitor damage during tensile loading of cement composites[J]. ACI Materials Journal, 2001, 98(4): 313-322.
    [23] DEMIREL B, YAZICIOĞLU S, ORHAN N. Electrical behaviour of carbon fibre-reinforced concrete with increasing loading in varying and constant frequencies[J]. Magazine of Concrete Research, 2006, 58(10): 691-697. doi: 10.1680/macr.2006.58.10.691
    [24] HAN B G, YU X, KWON E, et al. Effects of CNT concentration level and water/cement ratio on the piezoresistivity of CNT/cement composites[J]. Journal of Composite Materials, 2012, 46(1): 19-25. doi: 10.1177/0021998311401114
    [25] TEOMETE E, KOCYIGIT O I. Tensile strain sensitivity of steel fiber reinforced cement matrix composites tested by split tensile test[J]. Construction and Building Materials, 2013, 47: 962-968. doi: 10.1016/j.conbuildmat.2013.05.095
    [26] CHEN P W, CHUNG D D L. Carbon fiber reinforced concrete for smart structures capable of non-destructive flaw detection[J]. Smart Materials and Structures, 1993, 2(1): 22-30. doi: 10.1088/0964-1726/2/1/004
    [27] HAN B G, GUAN X C, OU J P. Electrode design, measuring method and data acquisition system of carbon fiber cement paste piezoresistive sensors[J]. Sensors and Actuators A: Physical, 2007, 135(2): 360-369. doi: 10.1016/j.sna.2006.08.003
    [28] 罗健林. 碳纳米管水泥基复合材料制备及功能性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.
    [29] CHUNG D D L, WANG Y L. Capacitance-based stress self-sensing in cement paste without requiring any admixture[J]. Cement and Concrete Composites, 2018, 94: 255-263. doi: 10.1016/j.cemconcomp.2018.09.017
    [30] MCCARTER W J, BROUSSEAU R. The A. C. response of hardened cement paste[J]. Cement and Concrete Research, 1990, 20(6): 891-900. doi: 10.1016/0008-8846(90)90051-X
    [31] KIM M K, LE H V, KIM D J. Electromechanical response of smart ultra-high performance concrete under external loads corresponding to different electrical measurements[J]. Sensors, 2021, 21(4): 1281.1-1281.18.
    [32] LEE S Y, LE H V, KIM D J. Self-stress sensing smart concrete containing fine steel slag aggregates and steel fibers under high compressive stress[J]. Construction and Building Materials, 2019, 220: 149-160. doi: 10.1016/j.conbuildmat.2019.05.197
    [33] LE H V, LEE D H, KIM D J. Effects of steel slag aggregate size and content on piezoresistive responses of smart ultra-high-performance fiber-reinforced concretes[J]. Sensors and Actuators A: Physical, 2020, 305: 111925.1-111925.14.
    [34] LE H V, KIM M K, KIM D J, et al. Electrical properties of smart ultra-high performance concrete under various temperatures, humidities, and age of concrete[J]. Cement and Concrete Composites, 2021, 118: 103979.1-103979.14.
    [35] SHI K R, CHUNG D D L. Piezoelectricity-based self-sensing of compressive and flexural stress in cement-based materials without admixture requirement and without poling[J]. Smart Materials and Structures, 2018, 27(10): 105011.1-105011.21.
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  17
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-08
  • 修回日期:  2025-04-08
  • 网络出版日期:  2025-08-05

目录

    /

    返回文章
    返回