Influence of Axial Compression Ratio on Hysteretic Properties of Steel Shell-Concrete Pylon
-
摘要:
为研究轴压比对钢壳−组合索塔滞回性能的影响,基于无纵筋的组合索塔构造,以轴压比为研究参数设计3个滞回试件,测试得到各试件的滞回曲线、破坏特征以及应变发展,总结试件在大偏心破坏下的力学行为;采用ABAQUS软件建立有限元模型作进一步分析,探明索塔截面发生界限破坏的条件;提出界限破坏下截面的轴压与弯矩计算公式,并探讨截面中含钢率与混凝土强度对界限破坏轴压比的影响规律. 研究结果表明:大偏心破坏下,截面的刚度、峰值承载力和耗能性能随轴压比的增大而提升,当轴压比由0.056增大至0.166时,试件的刚度与抗弯承载力提升了20%;组合索塔截面的界限破坏条件为受拉侧边缘钢壳屈服的同时受压侧边缘混凝土压溃,界限破坏下截面具有最高的抗弯承载力与刚度;提出的计算公式能较为准确地评估界限破坏下截面的轴压比与抗弯承载力,含钢率和混凝土强度的提升均将使截面界限破坏轴压比下降;组合索塔截面界限破坏轴压比位于0.44~0.56,更适用于轴压比较大的大跨度悬索桥桥塔.
Abstract:To investigate the influence of the axial compression ratio on the hysteretic properties of the steel shell-concrete composite pylon, based on the composite pylon structure without longitudinal rebars, three hysteretic specimens were designed with the axial compression ratio as the research parameter. Through testing, the hysteresis curves, failure characteristics, and strain development of each specimen were obtained, and the mechanical behavior under large eccentric failure was analyzed. A finite element model was then established using ABAQUS for further analysis, and the boundary failure conditions of the pylon section were determined. Then, calculation formulas for the axial compression and bending moment of the section under boundary failure were proposed, and the effect of the steel ratio and concrete strength on the axial compression ratio under boundary failure was discussed. The research results indicate that under large eccentric failure, the section stiffness, peak bearing capacity, and energy dissipation capacity increase with the axial compression ratio. When the axial compression ratio increases from 0.056 to 0.166, the stiffness and the flexural capacity of the specimen improve by 20%. The boundary failure condition of the composite pylon section is defined by the yielding of the tensile-side steel shell and crushing of the compressive-side concrete. Under boundary failure, the section achieves its highest flexural capacity and stiffness. The proposed calculation formulas provide an accurate assessment of the axial compression ratio and flexural capacity under boundary failure. Both an increase in steel ratio and concrete strength lead to a reduction in the axial compression ratio at boundary failure. The axial compression ratio under boundary failure in the composite pylon section falls within the range of 0.44–0.56, making it well-suited for long-span suspension bridge towers with higher axial compression ratios.
-
Key words:
- cable-stayed bridge /
- composite structure /
- tower /
- axial compression ratio /
- hysteretic experiment
-
表 1 试件材性参数
Table 1. Material parameters of specimens
编号 V/kN A/m2 含钢率/% 配箍率/% n fsh/MPa fy/MPa fck/MPa SP7300 7300 1.0 3.35 2.67 0.166 500 464 44.4 SP4500 4500 0.102 SP2500 2500 0.056 注:fsh为钢壳的屈服应力,fy为钢筋的屈服应力,fck为混凝土的圆柱体强度. 表 2 承载力对比
Table 2. Bearing capacity comparison
试件编号 Fy/kN Fp/kN 试验 有限元 试验 有限元 SP7300 1639 1717 1927 2044 SP4500 1487 1617 1727 1849 SP2500 1321 1539 1539 1665 注:Fy为屈服荷载,Fp为峰值荷载. -
[1] 欧智菁, 陈伟隆, 曹磊. UHPC预制管混凝土组合柱抗震性能[J]. 西南交通大学学报, 2025, 60(1): 63-71.OU Zhijing, CHEN Weilong, CAO Lei. Seismic performance of concrete composite columns of ultra-high performance concrete precast pipe[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 63-71. [2] ZHANG Y Y, LIU Y Q, XIN H H, et al. Numerical parametric study on ultimate load and ductility of concrete encased equal-leg angle steel composite columns[J]. Engineering Structures, 2018, 35(12): 134-142. [3] 柯晓军, 苏益声, 商效瑀, 等. 钢管混凝土组合柱压弯性能试验及承载力计算[J]. 工程力学, 2018, 35(12): 134-142.KE Xiaojun, SU Yisheng, SHANG Xiaoyu, et al. Strength calculation and eccentric compressive test of steel tube-reinforced concrete composite columns[J]. Engineering Mechanics, 2018, 35(12): 134-142. [4] 邓明科, 张阳玺, 陈尚城. 高延性混凝土加固框架柱抗震性能试验研究及其轴压比限值分析[J]. 土木工程学报, 2019, 52(2): 22-31, 65.DENG Mingke, ZHANG Yangxi, CHEN Shangcheng. Experimental research of the seismic performance of frame columns strengthened with high ductile concrete jacket and analysis of the limitation of axial load ratio[J]. China Civil Engineering Journal, 2019, 52(2): 22-31, 65. [5] 林上顺, 林永捷, 张建帅, 等. ECC和预制榫卯混合连接装配式桥墩抗震试验及计算方法[J]. 西南交通大学学报, 2025, 60(2): 472-483.LIN Shangshun, LIN Yongjie, ZHANG Jianshuai, et al. Seismic testing and calculation method of assembled bridge piers with hybrid connection of engineered cementitious composites and assembled mortise-tenon joints[J]. Journal of Southwest Jiaotong University, 2025, 60(2): 472-483. [6] 陈爱军, 彭容新, 王解军, 等. 大跨连续刚构桥双肢薄壁墩抗震性能研究[J]. 振动与冲击, 2020, 39(1): 1-7.CHEN Aijun, PENG Rongxin, WANG Jiejun, et al. Aseismic performance of double-limb thin-walled piers of a large-span continuous rigid frame bridge[J]. Journal of Vibration and Shock, 2020, 39(1): 1-7. [7] CAO S S, JIANG L Z, WEI B. Numerical and experimental investigations on the Park-Ang damage index for high-speed railway bridge piers with flexure failures[J]. Engineering Structures, 2019, 201: 109851. doi: 10.1016/j.engstruct.2019.109851 [8] 张保硕, 张璐珂. 考虑轴压比和剪跨比的RC墩柱拟静力试验及地震易损性分析[J]. 建筑结构, 2023, 53(增2): 730-737.ZHANG Baoshuo, ZHANG Luke. Seismic vulnerability analysis and pseudo-static test of reinforced concrete piers with different axial compression ratios and shear span ratios[J]. Building Structure, 2023, 53(S2): 730-737. [9] 邵长江, 漆启明, 韦旺, 等. 矩形混凝土空心墩延性抗震性能试验研究[J]. 西南交通大学学报, 2022, 57(1): 129-138, 157. doi: 10.3969/j.issn.0258-2724.20200092SHAO Changjiang, QI Qiming, WEI Wang, et al. Experimental study on ductile seismic performance of rectangular hollow concrete columns[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 129-138,157. doi: 10.3969/j.issn.0258-2724.20200092 [10] 王国清, 苏思博, 贾献卓, 等. 不同轴压比下低剪跨比插槽式管墩抗震性能研究[J]. 重庆交通大学学报(自然科学版), 2022, 41(3): 65-71.WANG Guoqing, SU Sibo, JIA Xianzhuo, et al. Seismic performance of slot type pipe pier with low shear span ratio under different axial compression ratio[J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(3): 65-71. [11] YU F, XU G S, NIU D T, et al. Experimental study on PVC-CFRP confined concrete columns under low cyclic loading[J]. Construction and Building Materials, 2018, 177: 287-302. doi: 10.1016/j.conbuildmat.2018.05.111 [12] 刘雪山, 李建中, 张宏杰, 等. 不同构造下的预制拼装钢管混凝土桥墩抗震性能试验[J]. 中国公路学报, 2021, 34(11): 116-128. doi: 10.3969/j.issn.1001-7372.2021.11.010LIU Xueshan, LI Jianzhong, ZHANG Hongjie, et al. Experimental analysis of seismic performance of precast assembled concrete filled steel tube piers under different structures[J]. China Journal of Highway and Transport, 2021, 34(11): 116-128. doi: 10.3969/j.issn.1001-7372.2021.11.010 [13] 苏思博, 张广达, 韩强, 等. 灌浆波纹管连接预制高强RC离心管墩抗震性能[J]. 中国公路学报, 2023, 36(9): 48-60.SU Sibo, ZHANG Guangda, HAN Qiang, et al. Seismic performance of high-strength centrifugal prefabricated RC hollow pipe column with grouted corrugated ducts connection[J]. China Journal of Highway and Transport, 2023, 36(9): 48-60. [14] AASHTO. AASHTO Guide Specifications for LRFD Seismic Bridge Design (2nd ed. )[S]. Washington D. C.: American Association of State Highway and Transportation Officials, 2011. [15] European Committee for Standardization (CEN). Eurocode 8: Design of Structures for Earthquake Resistance – Part 2: Bridges (EN 1998-2: 2005)[S]. Brussels: CEN, 2005. [16] 中华人民共和国交通运输部. 公路桥梁抗震设计规范: JTG/T 2231-01—2020[S]. 北京: 人民交通出版社, 2020. [17] 董俊, 曾永平, 冷丹. 九度地震区高速铁路简支梁合理减隔震体系分析[J]. 哈尔滨工业大学学报, 2023, 55(11): 115-124, 134. doi: 10.11918/202109078DONG Jun, ZENG Yongping, LENG Dan. Analysis of reasonable seismic isolation system for high-speed railway simply supported bridge in nine-degree seismic regions[J]. Journal of Harbin Institute of Technology, 2023, 55(11): 115-124, 134. doi: 10.11918/202109078 [18] 李兵, 姚云龙, 郭立成, 等. 佛山富龙西江特大桥主桥设计[J]. 桥梁建设, 2023, 53(6): 127-134.LI Bing, YAO Yunlong, GUO Licheng, et al. Design of main bridge of fulong Xijiang River bridge in Foshan[J]. Bridge Construction, 2023, 53(6): 127-134. [19] 肖海珠, 高宗余, 陆勤丰, 等. 南京仙新路长江大桥主桥结构设计[J]. 桥梁建设, 2024, 54(2): 1-7.XIAO Haizhu, GAO Zongyu, LU Qinfeng, et al. Structural design of main bridge of Nanjing Xianxin Road Changjiang River bridge[J]. Bridge Construction, 2024, 54(2): 1-7. [20] CUI B, WU H L, ZHAO C H, et al. Steel–concrete composite cable-stayed bridge: main bridge of the Jiangxinzhou Yangtze River bridge at Nanjing[J]. Structural Engineering International, 2023, 33(1): 107-114. doi: 10.1080/10168664.2021.1999191 [21] 刘永健, 孙立鹏, 周绪红, 等. 钢管混凝土桥塔工程应用与研究进展[J]. 中国公路学报, 2022, 35(6): 1-21.LIU Yongjian, SUN Lipeng, ZHOU Xuhong, et al. Progress in the application of research on concrete-filled steel tubular bridge towers[J]. China Journal of Highway and Transport, 2022, 35(6): 1-21. [22] 朱尧于, 聂鑫, 樊健生, 等. 薄开孔板连接件抗拔性能试验及理论研究[J]. 中国公路学报, 2018, 31(9): 65-74.ZHU Yaoyu, NIE Xin, FAN Jiansheng, et al. Experimental and theoretical study on pullout resistance of single-hole thin-rib perfobond connectors[J]. China Journal of Highway and Transport, 2018, 31(9): 65-74. [23] CUI B, WU H L, ZHAO C H, et al. Design concept and experimental study of steel shell–concrete composite pylon[J]. Structural Engineering International, 2024, 34(2): 304-316. doi: 10.1080/10168664.2023.2190763 [24] 梁桓玮, 许春荣, 林昱, 等. 带肋直钩钢筋剪力键剪切与拔出性能研究[J/OL]. 西南交通大学学报, 2024: 1-9. (2024-07-15). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=XNJT20240710008&dbname=CJFD&dbcode=CJFQ. [25] 孙立鹏, 刘永健, 张宁, 等. 单侧约束三边支承高强钢板的局部屈曲性能[J]. 工程力学, 2021, 38(7): 19-29. doi: 10.6052/j.issn.1000-4750.2020.06.0407SUN Lipeng, LIU Yongjian, ZHANG Ning, et al. Local buckling behavior of high strength steel plate with unilateral restraint and trilateral support[J]. Engineering Mechanics, 2021, 38(7): 19-29. doi: 10.6052/j.issn.1000-4750.2020.06.0407 [26] 聂建国. 钢-混凝土组合结构桥梁[M]. 北京: 人民交通出版社, 2011. [27] 韩林海. 钢管混凝土结构——理论与实践[M]. 3版. 北京: 科学出版社, 2016. [28] 中华人民共和国住房和城乡建设部. GB 50010—2010 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2011. -
下载: