Calculation of Equivalent Electromagnetic Parameters of Short Primary Linear Induction Motor Under Influence of Multi-Factor Coupling
-
摘要:
短初级直线感应电机在运行过程中同时存在纵向动态端部效应与铁心饱和效应,二者相互耦合且呈非线性,导致其等效电磁参数难以通过传统解析法精确计算. 为此,提出一种考虑多因素耦合影响的短初级直线感应电机等效电磁参数解析计算方法. 首先,分析多因素耦合影响下短初级直线感应电机的改进等效电路;其次,建立短初级直线感应电机的一维电磁场模型和考虑铁心磁阻的磁回路,并根据安培环路定律导出包含速度因子和铁心磁导率的气隙磁密的微分方程,再通过迭代法和铁心磁化曲线计算各个位置的气隙磁密;然后,根据磁链法和等效损耗法分别计算不同工况下的励磁电感和次级电阻;最后,在ANSYS Maxwell中建立短初级直线感应电机的瞬态场仿真模型进行对比验证. 结果表明:励磁电感解析结果相较于有限元结果误差最大为6.8%,次级电阻解析结果相较于有限元结果误差最大为6.4%;基于所得等效参数计算的推力与试验数据吻合良好,进一步验证所提解析方法的准确性.
Abstract:The short primary linear induction motor (SPLIM) contains both longitudinal dynamic end effect and core saturation effect during operation, and its equivalent electromagnetic parameters are difficult to be calculated accurately by the traditional analytical method due to the mutual coupling and nonlinear influence of these two effects. To this end, the analytical calculation method of the equivalent electromagnetic parameters of SPLIM under the influence of multi-factor coupling was proposed. Firstly, the improved equivalent circuit of SPLIM under the influence of multi-factor coupling was analyzed. Secondly, the one-dimensional electromagnetic field model of SPLIM and the magnetic circuit considering the core reluctance were established, and the differential equations of the air-gap flux density containing the speed factor and core permeability were derived according to Ampère’s circuital law. The air-gap flux density at each position was calculated by the iterative method and the core magnetization curves. Next, the excitation inductance and secondary resistance under different operating conditions were calculated according to the magnetic chain method and the equivalent loss method, respectively. Finally, a transient field simulation model of SPLIM was established in ANSYS Maxwell. Results reveal that the maximum error between the analytical results for excitation inductance and the finite element results is 6.8%, while the maximum error between the analytical results for secondary resistance and the finite element results is 6.4%. The thrust calculated based on equivalent parameters is in good agreement with the experimental data, further validating the accuracy of the proposed analytical method.
-
表 1 SPLIM的结构参数
Table 1. Structural parameters of SPLIM
参数名称 数值 初级铁心厚度/mm 20 次级感应板厚度/mm 8 次级铁心厚度/mm 20 次级铁心宽度/mm 110 机械气隙/mm 5 初级铁心宽度/mm 100 极距/mm 210 匝数/匝 160 相数 6 极对数 1 -
[1] 黄垂兵, 孙兆龙, 魏锟, 等. 短初级六相直线感应电机感应电势计算方法及不对称规律研究[J]. 中国电机工程学报, 2023, 43(14): 5643-5653. doi: 10.13334/j.0258-8013.pcsee.220826HUANG Chuibing, SUN Zhaolong, WEI Kun, et al. Research on calculation method and asymmetry law of induced electromotive force for short primary six-phase linear induction motor[J]. Proceedings of the CSEE, 2023, 43(14): 5643-5653. doi: 10.13334/j.0258-8013.pcsee.220826 [2] 朱俊杰, 吴志程, 许金, 等. 电磁发射直线感应电机多约束改进间接矢量控制策略[J]. 电机与控制学报, 2022, 26(8): 11-20. doi: 10.15938/j.emc.2022.08.002ZHU Junjie, WU Zhicheng, XU Jin, et al. Improved indirect vector control strategy with multi-constraints of linear induction motor for generalized electromagnetic launch[J]. Electric Machines and Control, 2022, 26(8): 11-20. doi: 10.15938/j.emc.2022.08.002 [3] 李庆来, 方晓春, 杨中平, 等. 直线感应电机在轨道交通中的应用与控制技术综述[J]. 微特电机, 2021, 49(8): 39-47.LI Qinglai, FANG Xiaochun, YANG Zhongping, et al. Review of the application and control technology in the linear induction motor for the rail transit[J]. Small & Special Electrical Machines, 2021, 49(8): 39-47. [4] TU X, HOU X G, ZHAO J H, et al. Speed identification of speed sensorless linear induction motor based on MRAS[J]. CES Transactions on Electrical Machines and Systems, 2023, 7(3): 294-300. doi: 10.30941/CESTEMS.2023.00032 [5] BAZGHALEH A Z, CHOOLABI E F. A new approach for non-linear time-harmonic FEM-based analysis of single-sided linear induction motor incorporated with a new accurate method of force calculation[J]. IEEE Transactions on Magnetics, 2021, 57(2): 7400709. doi: 10.1109/tmag.2020.3040720 [6] 吕刚, 张贤. 不同槽配合格栅型直线感应电机电磁特性研究[J]. 电机与控制学报, 2019, 23(5): 18-24, 33.LÜ Gang, ZHANG Xian. Investigation of electromagnetic characteristics of linear induction motor with ladder-type secondary under different slot combination[J]. Electric Machines and Control, 2019, 23(5): 18-24,33. [7] 张志华, 史黎明, 蔡华, 等. 长初级双边直线感应电机制动特性研究[J]. 中国电机工程学报, 2015, 35(11): 2854-2861. doi: 10.13334/j.0258-8013.pcsee.2015.11.025ZHANG Zhihua, SHI Liming, CAI Hua, et al. Research on braking characteristics of long primary double-sided linear induction motor[J]. Proceedings of the CSEE, 2015, 35(11): 2854-2861. doi: 10.13334/j.0258-8013.pcsee.2015.11.025 [8] 丰富, 胡海林, 钟德鸣, 等. 基于改进互联型全阶观测器的直线感应电机在线参数辨识[J]. 西南交通大学学报, 2024, 59(4): 776-785.FENG Fu, HU Hailin, ZHONG Deming, et al. Online parameter identification of linear induction motors based on improved interconnected full-order observer[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 776-785. [9] 胡海林, 陈维金, 虞诗焱, 等. 考虑边端效应及参数变化的直线感应电机MRAS速度观测方法[J]. 铁道科学与工程学报, 2024, 21(4): 1591-1601. doi: 10.19713/j.cnki.43-1423/u.T20231060HU Hailin, CHEN Weijin, YU Shiyan, et al. MRAS velocity observation method for a linear induction motor considering edge effects and parameter variations[J]. Journal of Railway Science and Engineering, 2024, 21(4): 1591-1601. doi: 10.19713/j.cnki.43-1423/u.T20231060 [10] 韩一, 聂子玲, 朱俊杰, 等. 考虑动态边端效应的六相直线感应电机数学模型及矢量控制[J]. 电机与控制学报, 2019, 23(3): 9-17. doi: 10.15938/j.emc.2019.03.002HAN Yi, NIE Ziling, ZHU Junjie, et al. Mathematical model and vector control of six-phase linear induction motor considering dynamic end effect[J]. Electric Machines and Control, 2019, 23(3): 9-17. doi: 10.15938/j.emc.2019.03.002 [11] 韩一, 聂子玲, 许金, 等. 动初级高速六相直线感应电机工作特性分析[J]. 国防科技大学学报, 2021, 43(4): 85-93. doi: 10.11887/j.cn.202104011HAN Yi, NIE Ziling, XU Jin, et al. Performance analysis of the moving primary six-phase linear induction motor[J]. Journal of National University of Defense Technology, 2021, 43(4): 85-93. doi: 10.11887/j.cn.202104011 [12] 吕敬高. 考虑纵向动态边端效应的短初级直线感应电机等效电路改进模型[J]. 船电技术, 2024, 44(5): 49-52. doi: 10.3969/j.issn.1003-4862.2024.05.012LYU Jinggao. An improved equivalent circuit model for short primary linear induction motor considering longitudinal dynamic end effect[J]. Marine Electric & Electronic Engineering, 2024, 44(5): 49-52. doi: 10.3969/j.issn.1003-4862.2024.05.012 [13] 徐伟, 李耀华, 孙广生, 等. 短初级单边直线感应电机新型等效电路[J]. 中国电机工程学报, 2009, 29(9): 80-86. doi: 10.3321/j.issn:0258-8013.2009.09.013XU Wei, LI Yaohua, SUN Guangsheng, et al. New equivalent circuits of short primary single-sided linear induction motor[J]. Proceedings of the CSEE, 2009, 29(9): 80-86. doi: 10.3321/j.issn:0258-8013.2009.09.013 [14] 刘希军, 魏麟, 朱新宇, 等. 端部效应对长初级双边直线感应电机影响研究[J]. 机电工程, 2018, 35(2): 170-174. doi: 10.3969/j.issn.1001-4551.2018.02.012LIU Xijun, WEI Lin, ZHU Xinyu, et al. Influence of end effect on long primary double-sided linear induction motor[J]. Journal of Mechanical & Electrical Engineering, 2018, 35(2): 170-174. doi: 10.3969/j.issn.1001-4551.2018.02.012 [15] 张育兴, 马名中, 马伟明, 等. 双定子直线感应电机饱和特性分析[J]. 中国电机工程学报, 2012, 32(36): 102-108, 7. doi: 10.13334/j.0258-8013.pcsee.2012.36.017ZHANG Yuxing, MA Mingzhong, MA Weiming, et al. Analysis of saturation characteristics of double-stator linear induction motors[J]. Proceedings of the CSEE, 2012, 32(36): 102-108,7. doi: 10.13334/j.0258-8013.pcsee.2012.36.017 [16] 许金, 李明珂, 韩正清, 等. 直线感应电机非线性参数计算[J]. 华中科技大学学报(自然科学版), 2021, 49(9): 72-76.XU Jin, LI Mingke, HAN Zhengqing, et al. Calculation of nonlinear parameters for linear induction motors[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(9): 72-76. [17] 许金, 马伟明, 鲁军勇, 等. 长定子直线感应电机饱和特性和非线性计算[J]. 电工技术学报, 2012, 27(9): 183-190.XU Jin, MA Weiming, LU Junyong, et al. Saturation characteristics analysis and nonlinear calculation methods of long-stator linear induction motors[J]. Transactions of China Electrotechnical Society, 2012, 27(9): 183-190. [18] 黄垂兵, 马伟明, 许金, 等. 六相圆筒式直线感应电机磁路计算及饱和特性分析[J]. 电工技术学报, 2018, 33(5): 1032-1039. doi: 10.19595/j.cnki.1000-6753.tces.171285HUANG Chuibing, MA Weiming, XU Jin, et al. Magnetic circuit calculation and saturation characteristics analysis of six phase cylindrical linear induction motor[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 1032-1039. doi: 10.19595/j.cnki.1000-6753.tces.171285 [19] 杨帆, 欧阳斌, 翟小飞, 等. 铁心饱和对正交绕组平面感应电机电磁耦合特性的影响研究[J/OL]. 西安交通大学学报, https://link.cnki.net/urlid/61.1069.T.20241225.0901.002YANG Fan, OUYANG Bin, ZHAI Xiaofei, et al. Research on Electromagnetic Coupling Characteristics of Primary Core Saturation to Orthogonal Winding Planar Induction Motor[J]. Journal of Xi'an Jiaotong University, https://link.cnki.net/urlid/61.1069.T.20241225.0901.002 [20] LEE M, KOO B, NAM K. Analytic optimization of the halbach array slotless motor considering stator yoke saturation[J]. IEEE Transactions on Magnetics, 2021, 57(2): 8200806. doi: 10.1109/tmag.2020.3019353 [21] 刘璐, 王晓年, 杜旭东. 基于多项式磁饱和模型及EKF的感应电机磁链观测[J]. 电工技术学报, 2017, 32(21): 77-86. doi: 10.19595/j.cnki.1000-6753.tces.170096LIU Lu, WANG Xiaonian, DU Xudong. Flux observer of induction motor based on polynomial magnetic saturation model and EKF algorithm[J]. Transactions of China Electrotechnical Society, 2017, 32(21): 77-86. doi: 10.19595/j.cnki.1000-6753.tces.170096 [22] 韩正清, 许金, 芮万智, 等. 高速短初级直线感应电动机等效电路模型及时变参数辨识[J]. 电机与控制学报, 2021, 25(11): 8-15. doi: 10.15938/j.emc.2021.11.002HAN Zhengqing, XU Jin, RUI Wanzhi, et al. Equivalent circuit model and time-varying parameter identification of high speed short primary linear induction motors[J]. Electric Machines and Control, 2021, 25(11): 8-15. doi: 10.15938/j.emc.2021.11.002 [23] LI M K, XU J, ZHANG Y C, et al. Field modeling and thrust analysis of linear induction motor considering edge-end effect and core saturation[J]. IEEE Transactions on Magnetics, 2024, 60(5): 8201609. doi: 10.1109/tmag.2024.3378728 -
下载: