• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

高速动车组液压互联减振器与动力学性能研究

段亮 石怀龙 宋春元 林佳志 陈龙飞 张耀洵

段亮, 石怀龙, 宋春元, 林佳志, 陈龙飞, 张耀洵. 高速动车组液压互联减振器与动力学性能研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240511
引用本文: 段亮, 石怀龙, 宋春元, 林佳志, 陈龙飞, 张耀洵. 高速动车组液压互联减振器与动力学性能研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240511
DUAN Liang, SHI Huailong, SONG Chunyuan, LIN Jiazhi, CHEN Longfei, ZHANG Yaoxun. Study on Hydraulic Interconnected Damper and Dynamic Performance of High-Speed Electric Multiple Units[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240511
Citation: DUAN Liang, SHI Huailong, SONG Chunyuan, LIN Jiazhi, CHEN Longfei, ZHANG Yaoxun. Study on Hydraulic Interconnected Damper and Dynamic Performance of High-Speed Electric Multiple Units[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240511

高速动车组液压互联减振器与动力学性能研究

doi: 10.3969/j.issn.0258-2724.20240511
基金项目: 吉林省科技发展计划项目(20220201052GX);国家自然科学基金项目(52272406,U2268211);四川省自然科学基金项目(2024NSFSC0003,2025ZNSFSC00342)
详细信息
    作者简介:

    段亮(1990—),男,高级工程师,博士,研究方向为转向架设计与动力学,E-mail:duanliang_crc@126.com

    通讯作者:

    石怀龙(1986—),男,副研究员,博士,研究方向为轨道车辆动力学与控制,E-mail:shi@swjtu.edu.cn

  • 中图分类号: U271

Study on Hydraulic Interconnected Damper and Dynamic Performance of High-Speed Electric Multiple Units

  • 摘要:

    针对高速动车组轴箱内置式转向架抗侧滚刚度不足问题,提出采用液压互联单元替代传统减振器的一系悬挂构型,可在不增加悬挂垂向刚度的前提下提升抗侧滚刚度. 首先,推导油液压力、流量和输出力平衡方程,基于SIMPACK建立车辆系统非线性动力学模型,并通过MATLAB/Simulink建立液压互联单元仿真模型,实现车辆-液压互联单元系统的联合仿真;开展液压互联单元准静态特性测试和整车滚振台架动力学试验,验证了仿真模型的准确性;针对车辆多种运行工况,仿真分析液压互联单元关键参数对车体侧滚角、脱轨系数和平稳性指标的影响规律;开展线路动力学试验,验证车辆通过曲线时动力学性能的改善效果. 研究结果表明:液压互联单元的侧滚刚度明显大于传统液压减振器,车辆曲线通过时车体侧滚角可降低0.5°以上,有利于缩窄动态限界和保障倾覆安全性;线路试验表明,液压互联单元与传统油压减振器两种方案的各项动力学指标相当,通过液压互联单元解决转向架抗侧滚能力不足问题是可行的.

     

  • 图 1  高速转向架及液压互联单元

    Figure 1.  High-speed bogie and hydraulic interconnected unit

    图 2  液压互联单元结构示意

    Figure 2.  Structure of hydraulic interconnected unit

    图 3  液压互联单元台架试验现场

    Figure 3.  Scene of roller rig tests of hydraulic interconnected unit

    图 4  不同工况下的液压互联单元动态特性曲线

    Figure 4.  Dynamic characteristic curves of hydraulic interconnected unit in different conditions

    图 5  车辆动力学台架试验照片

    Figure 5.  Photo of dynamic roller rig tests of vehicle

    图 6  动力学台架试验传感器测点布置

    Figure 6.  Layout of sensors of dynamic roller rig tests

    图 7  横向稳定性指标的仿真与试验结果

    Figure 7.  Simulation and test results of lateral stability index

    图 8  运行平稳性指标的仿真与试验结果

    Figure 8.  Simulation and test results of riding index in operation

    图 9  过超高线路几何设置

    Figure 9.  Track geometry with excessive superelevation

    图 10  EN14363-2016规定的标准扭曲线路

    Figure 10.  Twisted track declared in EN14363-2016

    图 11  正常线路几何设置

    Figure 11.  Geometry settings of normal tracks

    图 12  各关键参数变化对应的垂向平稳性指标峰值

    Figure 12.  Peak values of vertical riding index corresponding to various key parameters

    图 13  试验线路几何设置

    Figure 13.  Geometry settings of test tracks

    图 14  车体侧滚角线路实测结果

    Figure 14.  Measured results of roll angles of car body on track

    图 15  液压互联单元与传统油压减振器两种方案对应的动力学性能指标线路试验结果

    Figure 15.  Test results of dynamic index on tracks corresponding to hydraulic interconnected unit and traditional damper

    表  1  液压互联减振器台架试验工况

    Table  1.   Conditions of roller rig tests for hydraulic interconnected dampers

    工况 载荷模式 振幅/mm 频率/Hz 速度/(mm·s−1
    A 侧滚 10 0.1 6.3
    B 侧滚 20 0.1 12.6
    C 侧滚 30 0.1 18.5
    D 浮沉 33 0.25 51.8
    下载: 导出CSV

    表  2  车体侧滚角随系统关键参数变化

    Table  2.   Changes of roll angles of car body under various key system parameters

    关键参数 参数取值 车体侧滚角/(°)
    系统油压 常规减振器 1.629
    系统油压 4 MPa 1.291
    系统油压 6 MPa 1.162
    系统油压 8 MPa 1.073
    液压缸几何尺寸 常规减振器 1.629
    液压缸 40/活塞杆 25 1.472
    液压缸 60/活塞杆 30 1.351
    液压缸 80/活塞杆 35 1.212
    蓄能器容积 常规减振器 1.629
    蓄能器容积 0.25 L 1.036
    蓄能器容积 0.50 L 1.162
    蓄能器容积 0.75 L 1.240
    蓄能器初始压力 常规减振器 1.629
    初始压力 1.5 MPa 1.162
    初始压力 2.0 MPa 1.200
    初始压力 2.5 MPa 1.229
    下载: 导出CSV

    表  3  车体横移量随系统关键参数变化

    Table  3.   Changes of lateral displacement of car body under various key system parameters

    关键参数 参数取值 车体横移量/mm
    系统油压 常规减振器 52.57
    系统油压 4 MPa 46.16
    系统油压 6 MPa 45.56
    系统油压 8 MPa 45.14
    液压缸几何尺寸 常规减振器 52.57
    液压缸 40/活塞杆 25 47.00
    液压缸 60/活塞杆 30 46.44
    液压缸 80/活塞杆 35 45.79
    蓄能器容积 常规减振器 52.57
    蓄能器容积 0.25 L 44.98
    蓄能器容积 0.50 L 45.56
    蓄能器容积 0.75 L 45.92
    蓄能器初始压力 常规减振器 52.57
    初始压力 1.5 MPa 45.56
    初始压力 2.0 MPa 45.74
    初始压力 2.5 MPa 45.87
    下载: 导出CSV

    表  4  车辆脱轨系数随系统关键参数变化

    Table  4.   Changes of derailment coefficients under various key system parameters

    关键参数 参数取值 脱轨系数
    系统
    油压
    常规减振器 0.630
    系统油压 4 MPa 0.681
    系统油压 6 MPa 0.703
    系统油压 8 MPa 0.760
    液压缸
    几何尺寸
    常规减振器 0.630
    液压缸 40/活塞杆 25 0.646
    液压缸 60/活塞杆 30 0.667
    液压缸 80/活塞杆 35 0.703
    蓄能器
    容积
    常规减振器 0.630
    蓄能器容积 0.25 L 0.784
    蓄能器容积 0.5 L 0.721
    蓄能器容积 0.75 L 0.694
    蓄能器
    初始压力
    常规减振器 0.630
    初始压力 1.5 MPa 0.721
    初始压力 2.0 MPa 0.707
    初始压力 2.5 MPa 0.698
    下载: 导出CSV
  • [1] PERIS E, GOIKOETXEA J. Roll2Rail: new dependable rolling stock for a more sustainable, intelligent and comfortable rail transport in Europe[J]. Transportation Research Procedia, 2016, 14: 567-574. doi: 10.1016/j.trpro.2016.05.294
    [2] David Briginshaw. 西门子公司Velaro系列高速列车的新进展[J]. 国外铁道机车与动车, 2020(3): 9-12.

    David Briginshaw. Velaro evolution[J]. Foreign Railway Locomotive and Motor Car, 2020(3): 9-12.
    [3] 丁叁叁, 陈大伟, 刘加利. 中国高速列车研发与展望[J]. 力学学报, 2021, 53(1): 35-50.

    DING Sansan, CHEN Dawei, LIU Jiali. Research, development and prospect of China high-speed train[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 35-50.
    [4] 张隶新. 轴箱内置和外置高速转向架的动力学性能对比[J]. 铁道科学与工程学报, 2021, 18(3): 581-587.

    ZHANG Lixin. Dynamics analysis of high-speed railway bogies with inner bearing and outer bearing suspensions[J]. Journal of Railway Science and Engineering, 2021, 18(3): 581-587.
    [5] 缪炳荣, 张卫华, 池茂儒, 等. 下一代高速列车关键技术特征分析及展望[J]. 铁道学报, 2019, 41(3): 58-70.

    MIAO Bingrong, ZHANG Weihua, CHI Maoru, et al. Analysis and prospects of key technical features of next generation high speed trains[J]. Journal of the China Railway Society, 2019, 41(3): 58-70.
    [6] 刘秀梅, 李永涛. 车辆油气悬架技术研究综述[J]. 西南交通大学学报, 2025, 60(2): 374-394.

    LIU Xiumei, LI Yongtao. Review of research on vehicle hydro-pneumatic suspension technology[J]. Journal of Southwest Jiaotong University, 2025, 60(2): 374-394.
    [7] SMITH W A, ZHANG N, JEYAKUMARAN J. Hydraulically interconnected vehicle suspension: theoretical and experimental ride analysis[J]. Vehicle System Dynamics, 2010, 48(1): 41-64. doi: 10.1080/00423110903243190
    [8] SMITH W A, ZHANG N, HU W. Hydraulically interconnected vehicle suspension: handling performance[J]. Vehicle System Dynamics, 2011, 49(1/2): 87-106.
    [9] CAO D P, RAKHEJA S, SU C Y. Roll- and pitch-plane-coupled hydro-pneumatic suspension. part 2: dynamic response analyses[J]. Vehicle System Dynamics, 2010, 48(4): 507-528. doi: 10.1080/00423110902923461
    [10] DAMAVANDI A D, MASIH-TEHRANI M, MASHADI B. Configuration development and optimization of hydraulically interconnected suspension for handling and ride enhancement[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2022, 236(2/3): 381-394.
    [11] JAFARI B, MASHADI B. Valve control of a hydraulically interconnected suspension system to improve vehicle handling qualities[J]. Vehicle System Dynamics, 2023, 61(4): 1011-1027. doi: 10.1080/00423114.2022.2056490
    [12] QI H M, CHEN Y C, ZHANG N, et al. Improvement of both handling stability and ride comfort of a vehicle via coupled hydraulically interconnected suspension and electronic controlled air spring[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234(2/3): 552-571.
    [13] ZHU H J, YANG J, ZHANG Y Q. Dual-chamber pneumatically interconnected suspension: modeling and theoretical analysis[J]. Mechanical Systems and Signal Processing, 2021, 147: 107125. doi: 10.1016/j.ymssp.2020.107125
    [14] 陈盛钊, 张农, 张邦基, 等. 液压互联悬架关键参数对车辆频响特性的影响[J]. 湖南大学学报(自然科学版), 2017, 44(2): 16-25.

    CHEN Shengzhao, ZHANG Nong, ZHANG Bangji, et al. Influence of key parameters of hydraulically interconnected suspension on frequency domain characteristics of vehicles[J]. Journal of Hunan University (Natural Sciences), 2017, 44(2): 16-25.
    [15] 陈盛钊, 钟义旭, 张邦基, 等. 液压互联悬架系统关键参数对车辆动力学响应影响及试验验证[J]. 机械工程学报, 2017, 53(14): 39-48. doi: 10.3901/JME.2017.14.039

    CHEN Shengzhao, ZHONG Yixu, ZHANG Bangji, et al. Influence of key parameters of hydraulically interconnected suspension on vehicle dynamics and experimental validation[J]. Journal of Mechanical Engineering, 2017, 53(14): 39-48. doi: 10.3901/JME.2017.14.039
    [16] DI GIALLEONARDO E, FACCHINETTI A, BRUNI S. Control of an integrated lateral and roll suspension for a high-speed railway vehicle[J]. Vehicle System Dynamics, 2023, 61(2): 472-498. doi: 10.1080/00423114.2022.2049319
    [17] DI GIALLEONARDO E, SANTELIA M, BRUNI S, et al. A simple active carbody roll scheme for hydraulically actuated railway vehicles using internal model control[J]. ISA Transactions, 2022, 120: 55-69. doi: 10.1016/j.isatra.2021.03.003
    [18] COLOMBO E F, DI GIALLEONARDO E, FACCHINETTI A, et al. Active carbody roll control in railway vehicles using hydraulic actuation[J]. Control Engineering Practice, 2014, 31: 24-34. doi: 10.1016/j.conengprac.2014.05.010
    [19] LI H X, LI S W, SUN W C. Vibration and handling stability analysis of articulated vehicle with hydraulically interconnected suspension[J]. Journal of Vibration and Control, 2019, 25(13): 1899-1913. doi: 10.1177/1077546319844092
    [20] ZHANG J, DENG Y W, ZHANG N, et al. Vibration performance analysis of a mining vehicle with bounce and pitch tuned hydraulically interconnected suspension[J]. Chinese Journal of Mechanical Engineering, 2019, 32(1): 1-17. doi: 10.1186/s10033-018-0313-7
    [21] 索雪峰, 刘湘, 杜腾, 等. 三轴车中后桥液压互联悬架减振特性研究[J/OL]. 西南交通大学学报, 2024: 1-9. (2024-05-10). https://kns.cnki.net/kcms/detail/51.1277.u.20240509.1402.004.html.

    SUO Xuefeng, LIU Xiang, DU Teng, et al. Research on vibration reduction characteristics of hydraulic interconnecting suspension in middle and rear axle of three-axle vehicle[J/OL]. Journal of Southwest Jiaotong University, 2024: 1-9. (2024-05-10). https://kns.cnki.net/kcms/detail/51.1277.u.20240509.1402.004.html.
    [22] LUO R, LIU C D. Dynamics simulation of the high-speed train using interconnected hydro-pneumatic suspension as a self-steering system[J]. Vehicle System Dynamics, 2022, 60(6): 2055-2074. doi: 10.1080/00423114.2021.1892156
    [23] LUO R, LIU C D, SHI H L. Dynamic simulation of a high-speed train with interconnected hydro-pneumatic secondary suspension[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2022, 236(5): 570-581. doi: 10.1177/09544097211031334
    [24] 苏瑞. 内轴箱悬挂高速动车组转向架抗倾覆稳定性研究[D]. 成都: 西南交通大学, 2023.
    [25] 唐羽. 轴箱内置高速列车一系油气互联抗侧滚装置动力学研究[D]. 成都: 西南交通大学, 2022.
    [26] 童钧耕, 王平阳, 叶强. 热工基础[M]. 3版. 上海: 上海交通大学出版社, 2016.
    [27] 罗仁, 石怀龙. 铁道车辆系统动力学及应用[M]. 成都: 西南交通大学出版社, 2018.
    [28] 翟婉明. 车辆-轨道耦合动力学[M]. 3版. 北京: 科学出版社, 2007.
    [29] 中华人民共和国国家市场监督管理总局, 中国国家标准化管理委员会. 机车车辆动力学性能评定及试验鉴定规范: GB/T 5599—2019[S]. 北京: 中国标准出版社, 2019.
    [30] IX-CEN. Railway applications-testing and simulation for the acceptance of running characteristics of railway vehicles-running behaviour and stationary tests: BS EN 14363: 2016[S]. [S. l. ]: BSI, 2016.
    [31] 石怀龙, 罗仁, 曾京. 国内外高速列车动力学评价标准综述[J]. 交通运输工程学报, 2021, 21(1): 36-58.

    SHI Huailong, LUO Ren, ZENG Jing. Review on domestic and foreign dynamics evaluation criteria of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 36-58.
    [32] 祁亚运, 李龙, 石怀龙, 等. 高寒动车组温变特性对运行性能的影响分析[J]. 西南交通大学学报, 2025, 60(2): 336-345.

    QI Yayun, LI Long, SHI Huailong, et al. Influence of temperature-varying characteristics on operating performance of alpine electric multiple units[J]. Journal of Southwest Jiaotong University, 2025, 60(2): 336-345.
    [33] 陆铭. 时速200公里轴箱内置式转向架动力学性能研究[D]. 成都: 西南交通大学, 2021.
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  41
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-18
  • 修回日期:  2025-02-28
  • 网络出版日期:  2025-11-12

目录

    /

    返回文章
    返回