• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

腹板加劲冷弯型钢T形拼合边柱的受压性能

陈明 胡云龙 胡方琪 李恒凯 李补拴

陈明, 胡云龙, 胡方琪, 李恒凯, 李补拴. 腹板加劲冷弯型钢T形拼合边柱的受压性能[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240481
引用本文: 陈明, 胡云龙, 胡方琪, 李恒凯, 李补拴. 腹板加劲冷弯型钢T形拼合边柱的受压性能[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240481
CHEN Ming, HU Yunlong, HU Fangqi, LI Hengkai, LI Bushuan. Compression Performance of Cold-Formed Steel T-Shaped Composite Edge Columns with Web Stiffeners[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240481
Citation: CHEN Ming, HU Yunlong, HU Fangqi, LI Hengkai, LI Bushuan. Compression Performance of Cold-Formed Steel T-Shaped Composite Edge Columns with Web Stiffeners[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240481

腹板加劲冷弯型钢T形拼合边柱的受压性能

doi: 10.3969/j.issn.0258-2724.20240481
基金项目: 国家自然科学基金项目(52168024);内蒙古自治区自然科学基金项目(2021MS05061)
详细信息
    作者简介:

    陈明(1978—),男,教授,博士,研究方向为钢结构和空间结构的设计与理论方面的研究,E-mail:cmlx-1978@163.com

  • 中图分类号: TU392.1

Compression Performance of Cold-Formed Steel T-Shaped Composite Edge Columns with Web Stiffeners

  • 摘要:

    为研究腹板加劲冷弯薄壁型钢T形拼合边柱的受压性能,对8组试件开展轴压与偏压试验,结合有限元模型验证及参数分析,揭示“V”形纵向加劲肋对构件破坏模式和承载力的影响规律,并提出改进的承载力计算方法. 研究结果表明:轴压作用下未设加劲肋的T形拼合边柱单肢腹板率先出现局部屈曲,最终导致整体压溃破坏;增设“V”形加劲肋后,可以提高单肢C形钢腹板刚度,改善T形拼合边柱的局部屈曲模式,承载力提高约15%;随着偏心距增大,试件破坏模式基本相同,极限承载力呈下降趋势;基于有效宽度法预测轴压和偏压承载力结果均较保守,有限元结果和试验结果均大于计算结果,二者比值的平均值分别为1.238和1.143;修正后的有效宽度法预测结果与模拟值比值在1.000~1.074,预测结果较为准确.

     

  • 图 1  2种T形CFS拼合柱截面

    Figure 1.  Cross-section of two T-shaped CFS composite columns

    图 2  腹板加劲T形CFS边柱拼装示意

    Figure 2.  Assembly of T-shaped CFS edge column with web stiffeners

    图 3  T形CFS边柱立面

    Figure 3.  T-shaped CFS column elevation

    图 4  试件偏心方向

    Figure 4.  Specimen eccentricity direction

    图 5  试验加载装置示意

    Figure 5.  Test loading device

    图 6  应变片布置

    Figure 6.  Strain gauge arrangement

    图 7  边界条件示意

    Figure 7.  Boundary conditions

    图 8  不同长细比试件破坏对比

    Figure 8.  Comparison of failure of specimens with different slenderness ratios

    图 9  偏压试件破坏对比

    Figure 9.  Comparison of specimen failure under eccentric compression

    图 10  荷载-轴向压缩位移曲线

    Figure 10.  Load–axial compression displacement curves

    图 11  试件荷载-应变曲线

    Figure 11.  Specimen load–strain curves

    图 12  不同长细比典型试件破坏模式

    Figure 12.  Typical failure modes of specimens with different slenderness ratios

    图 13  不同长细比试件荷载-轴向位移曲线

    Figure 13.  Load–axial displacement curves of specimens with different slenderness ratios

    图 14  不同偏心距试件破坏模式

    Figure 14.  Failure modes of specimens with different eccentric distances

    图 15  不同偏心距与不同试件荷载-轴向位移曲线

    Figure 15.  Load–axial displacement curves of specimens with different eccentric distances

    图 16  轴压承载力计算值对比

    Figure 16.  Comparison of calculated bearing capacity values under axial compression

    图 17  偏压承载力计算值对比(l=3 300 mm)

    Figure 17.  Comparison of calculated bearing capacity values under eccentric compression (l=3 300 mm)

    表  1  试件编号

    Table  1.   Specimen number

    试件编号 l/mm 受压类型 e/mm
    TC500−0-2.0 500 轴心受压 0
    TCV500−0-2.0 500 轴心受压 0
    TC1700−0-2.0 1 700 轴心受压 0
    TCV1700−0-2.0 1 700 轴心受压 0
    TCV1700−15-2.0 1 700 偏心受压 −15
    TCV1700+15-2.0 1 700 偏心受压 +15
    TCV1700+30-2.0 1 700 偏心受压 +30
    TCV1700+45-2.0 1 700 偏心受压 +45
    注:试件编号依次为是否加劲(V表示加劲)、le、板件厚度.
    下载: 导出CSV

    表  2  试件极限承载力对比

    Table  2.   Comparison of ultimate bearing capacity of specimens

    试件编号 Pcr/kN Pt/kN PA/kN PA/Pt
    TC500−0-2.0 520.16 525.04 536.29 1.02
    TCV500−0-2.0 600.08 607.61 641.90 1.06
    TC1700−0-2.0 500.41 515.38 543.29 1.05
    TCV1700−0-2.0 580.29 590.71 616.44 1.04
    TCV1700−15-2.0 512.06 518.35 527.65 1.02
    TCV1700+15-2.0 550.17 561.54 587.87 1.05
    TCV1700+30-2.0 450.65 449.23 457.63 1.02
    TCV1700+45-2.0 348.38 318.84 325.92 1.02
    下载: 导出CSV

    表  3  不同长细比试件承载力计算结果对比

    Table  3.   Comparison of bearing capacity calculation results for specimens with different slenderness ratios

    试件编号 λw Nu/kN PDSM/kN Nu1/kN PA/kN PA/Nu PA/PDSM PA/Nu1
    TCV900−0-2.0 17.03 536.99 668.59 615.58 622.71 1.159 0.931 1.012
    TCV1300−0-2.0 24.28 534.67 661.19 602.44 616.66 1.153 0.933 1.024
    TCV1700−0-2.0 31.52 532.70 650.19 596.69 612.90 1.150 0.943 1.027
    TCV2100−0-2.0 38.78 528.56 643.35 599.57 612.47 1.158 0.952 1.021
    TCV2500−0-2.0 46.02 523.01 633.27 606.92 608.57 1.163 0.961 1.001
    TCV2900−0-2.0 53.27 511.64 613.40 594.24 597.51 1.167 0.974 1.006
    TCV3300−0-2.0 60.52 489.95 605.34 587.70 595.05 1.214 0.983 1.013
    TCV3700−0-2.0 67.76 465.62 582.49 570.92 576.09 1.237 0.989 1.009
    TCV4100−0-2.0 75.01 433.45 569.81 545.52 567.53 1.309 0.996 1.040
    TCV4500−0-2.0 82.26 389.53 498.90 498.65 510.70 1.311 1.024 1.024
    TCV4900−0-2.0 89.51 353.65 451.45 446.59 456.56 1.291 1.011 1.022
    TCV5300−0-2.0 96.76 318.75 371.70 388.79 401.92 1.261 1.081 1.034
    TCV5700−0-2.0 104.00 287.54 321.82 337.80 345.24 1.201 1.073 1.022
    TCV6100−0-2.0 111.25 261.24 312.39 303.82 313.23 1.199 1.003 1.030
    TCV6500−0-2.0 118.50 235.65 283.69 292.48 294.31 1.249 1.037 1.001
    TCV6900−0-2.0 125.75 215.33 255.89 272.33 280.82 1.304 1.097 1.031
    TCV7300−0-2.0 132.00 198.40 239.22 261.56 265.29 1.337 1.109 1.014
    TCV7700−0-2.0 140.24 181.55 218.08 256.78 257.92 1.421 1.183 1.004
    平均值 1.238 1.021 1.027
    下载: 导出CSV

    表  4  不同偏心距试件承载力计算结果对比

    Table  4.   Comparison of bearing capacity calculation results for specimens with different eccentric distances

    试件编号 l/mm E/mm N/kN N1/kN Pt/PA/kN PA/N PA/N1
    TCV1700-15-2.0 1700 −15 458.72 516.57 518.35 1.129 1.022
    TCV1700-0-2.0 1700 0 532.70 596.69 590.71 1.089 1.015
    TCV1700 + 15-2.0 1700 + 15 527.76 552.48 561.54 1.064 1.001
    TCV1700 + 30-2.0 1700 + 30 407.65 443.87 449.23 1.102 1.028
    TCV1700 + 45-2.0 1700 + 45 303.37 316.92 318.84 1.051 1.026
    TCV2500-30-2.0 2500 −30 390.41 410.42 419.30 1.074 1.051
    TCV2500-15-2.0 2500 −15 446.05 496.05 503.59 1.129 1.000
    TCV2500-0-2.0 2500 0 523.01 606.92 608.57 1.164 1.004
    TCV2500 + 15-2.0 2500 + 15 459.63 509.63 523.98 1.140 1.013
    TCV2500 + 30-2.0 2500 + 30 384.97 414.87 425.39 1.105 1.009
    TCV2500 + 45-2.0 2500 + 45 330.89 338.86 356.04 1.076 1.011
    TCV3300-30-2.0 3300 −30 356.43 393.33 393.50 1.104 1.018
    TCV3300-15-2.0 3300 −15 399.27 470.87 472.74 1.184 1.021
    TCV3300-0-2.0 3300 0 489.95 587.70 595.02 1.214 1.041
    TCV3300 + 15-2.0 3300 + 15 435.53 502.34 506.96 1.164 1.040
    TCV3300 + 30-2.0 3300 + 30 363.75 400.09 404.49 1.112 1.002
    TCV3300 + 45-2.0 3300 + 45 310.75 330.62 336.47 1.084 1.017
    TCV4100-30-2.0 4100 −30 319.89 363.79 371.39 1.161 1.074
    TCV4100-15-2.0 4100 −15 367.71 430.38 447.87 1.219 1.022
    TCV4100-0-2.0 4100 0 433.45 545.52 567.53 1.309 1.015
    TCV4100 + 15-2.0 4100 + 15 380.75 480.34 481.27 1.264 1.001
    TCV4100 + 30-2.0 4100 + 30 319.45 377.64 383.98 1.202 1.028
    TCV4100 + 45-2.0 4100 + 45 276.73 296.57 318.52 1.151 1.026
    平均值 1.143 1.019
    下载: 导出CSV
  • [1] 陈明, 黄骥辉, 赵根田. 组合截面冷弯薄壁型钢结构研究进展[J]. 工程力学, 2016, 33(12): 1-11. doi: 10.6052/j.issn.1000-4750.2016.05.ST03

    CHEN Ming, HUANG Jihui, ZHAO Gentian. Research progress of compound section cold-formed thin-wall steel structures[J]. Engineering Mechanics, 2016, 33(12): 1-11. doi: 10.6052/j.issn.1000-4750.2016.05.ST03
    [2] YU C, SCHAFER B W. Distortional buckling tests on cold-formed steel beams[A]. Proceedings of the seventeenth international specialty conference on cold-formed steel structures, Orlando FL, 2004: 1-27.
    [3] YU C, SCHAFER B W. Distortional buckling tests on cold-formed steel beams[J]. Journal of Structural Engineering, 2006, 132(4): 515-528. doi: 10.1061/(ASCE)0733-9445(2006)132:4(515)
    [4] MOEN C D, SCHAFER B W. Direct strength method for design of cold-formed steel columns with holes[J]. Journal of Structural Engineering, 2011, 137(5): 559-570. doi: 10.1061/(ASCE)ST.1943-541X.0000310
    [5] 石宇, 周绪红, 刘永健. 冷弯薄壁卷边槽钢偏心受压构件承载力计算的折减强度法[J]. 建筑科学与工程学报, 2011, 28(3): 40-48.

    SHI Yu, ZHOU Xuhong, LIU Yongjian. Strength-reduction method for load-carrying capacity of cold-formed thin-walled lipped channel members under eccentric compression[J]. Journal of Architecture and Civil Engineering, 2011, 28(3): 40-48.
    [6] 周绪红, 何子奇. 冷成型钢轴压构件畸变屈曲承载力计算公式研究[J]. 土木工程学报, 2015, 48(2): 1-9.

    ZHOU Xuhong, HE Ziqi. Research on design formula of distortional buckling capacity of cold-formed steel columns under axial compression[J]. China Civil Engineering Journal, 2015, 48(2): 1-9.
    [7] 刘占科, 周绪红. 基于直接强度法的薄壁轴压构件局部屈曲临界荷载实用计算式[J]. 建筑结构学报, 2016, 37(6): 219-227.

    LIU Zhanke, ZHOU Xuhong. Practical formula of critical local buckling load of thin-walled members under axial compression based on direct strength method[J]. Journal of Building Structures, 2016, 37(6): 219-227.
    [8] 周天华, 聂少锋, 刘向斌. 冷弯薄壁型钢开口三肢拼合柱轴压性能试验研究[J]. 建筑结构学报, 2012, 3(5): 22-29.

    ZHOU Tianhua, NIE Shaofeng, LIU Xiangbin. Experimental study on cold-formed steel three limbs built-up section members under axial compression[J]. Journal of Building Structures, 2012, 3(5): 22-29.
    [9] 李艳春, 周天华, 丁嘉豪, 等. 冷弯薄壁型钢拼合箱形柱的畸变屈曲性能研究[J]. 湖南大学学报(自然科学版), 2021, 48(11): 91-100.

    LI Yanchun, ZHOU Tianhua, DING Jiahao, et al. Investigation on distortion buckling behavior of cold-formed thin-walled steel built-up box-section columns[J]. Journal of Hunan University (Natural Sciences), 2021, 48(11): 91-100.
    [10] LIU X B, ZHOU T H. Research on axial compression behavior of cold-formed triple-lambs built-up open T-section columns[J]. Journal of Constructional Steel Research, 2017, 134: 102-113. doi: 10.1016/j.jcsr.2017.03.015
    [11] LIAO F F, WU H H, WANG R Z, et al. Compression test and analysis of multi-limbs built-up cold-formed steel stub columns[J]. Journal of Constructional Steel Research, 2017, 128: 405-415. doi: 10.1016/j.jcsr.2016.09.005
    [12] 何子奇, 杨光, 周绪红, 等. 腹板加劲冷弯薄壁拼合H形钢压弯构件畸变性能试验研究[J]. 建筑结构学报, 2022, 43(10): 237-248.

    HE Ziqi, YANG Guang, ZHOU Xuhong, et al. Experimental investigation on distortional performance of cold-formed steel built-up channel columns with web-stiffeners under eccentric compression[J]. Journal of Building Structures, 2022, 43(10): 237-248.
    [13] ZHANG J H, YOUNG B. Experimental investigation of cold-formed steel built-up closed section columns with web stiffeners[J]. Journal of Constructional Steel Research, 2018, 147: 380-392. doi: 10.1016/j.jcsr.2018.04.008
    [14] ZHANG J H, YOUNG B. Finite element analysis and design of cold-formed steel built-up closed section columns with web stiffeners[J]. Thin-Walled Structures, 2018, 131: 223-237. doi: 10.1016/j.tws.2018.06.008
    [15] HE Z Q, ZHOU X H, LIU Z K, et al. Post-buckling behaviour and DSM design of web-stiffened lipped channel columns with distortional and local mode interaction[J]. Thin-Walled Structures, 2014, 84: 189-203. doi: 10.1016/j.tws.2014.07.001
    [16] ZHANG P, ALAM M S. Compression tests of thin-walled cold-formed steel columns with Σ-shaped sections and patterned perforations distributed along the length[J]. Thin-Walled Structures, 2022, 174: 109082.1-109082.28.
    [17] CHEN M T, YOUNG B, MARTINS A D, et al. Experimental investigation on cold-formed steel stiffened lipped channel columns undergoing local-distortional interaction[J]. Thin-Walled Structures, 2020, 150: 106682.1-106682.20.
    [18] 姚永红, 武振宇. 冷弯薄壁卷边槽钢柱弹性畸变屈曲数值分析[J]. 科学技术与工程, 2012, 12(6): 1436-1438, 1444. doi: 10.3969/j.issn.1671-1815.2012.06.053

    YAO Yonghong, WU Zhenyu. Numerical analysis of elastic distortional buckling for cold-formed thin-walled steel lipped channel columns[J]. Science Technology and Engineering, 2012, 12(6): 1436-1438, 1444. doi: 10.3969/j.issn.1671-1815.2012.06.053
    [19] 何子奇, 杨光, 周绪红, 等. 腹板并合双肢冷弯薄壁Σ型钢压弯构件畸变性能试验研究[J]. 工程力学, 2023, 40(2): 25-35. doi: 10.6052/j.issn.1000-4750.2021.08.0626

    HE Ziqi, YANG Guang, ZHOU Xuhong, et al. Experimental research on distortional behavior of cold-formed thin-walled-shaped steel built-up sections under eccentric compression[J]. Engineering Mechanics, 2023, 40(2): 25-35. doi: 10.6052/j.issn.1000-4750.2021.08.0626
    [20] SELVARAJ S, MADHAVAN M. Design of cold-formed steel built-up columns subjected to local-global interactive buckling using direct strength method[J]. Thin-Walled Structures, 2021, 159: 107305.1-107305.20.
    [21] SELVARAJ S, MADHAVAN M. Design of cold-formed steel built-up closed section columns using direct strength method[J]. Thin-Walled Structures, 2022, 171: 108746.1-108746.18.
    [22] CHEN M, GENG Y, LI B S, et al. Compressive behavior study of cruciform cold-formed steel built-up columns with web stiffeners[J]. Structures, 2025, 71: 108090.1-108090.23.
    [23] CHEN M, GENG Y, GUO Y H, et al. Research on axial compression behavior of cold-formed steel built-up T-shaped columns[J]. Structures, 2024, 70: 107765.1-107765.18.
    [24] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料 拉伸试验第1部分: 室温试验方法: GB/T 228.1—2021[S]. 北京: 中国标准出版社, 2021.
    [25] LU W B, CHEN M, SHI Y, et al. Numerical simulation and specification provisions for cruciform cold-formed steel built-up columns[J]. Structures, 2023, 51: 484-497. doi: 10.1016/j.istruc.2023.03.043
    [26] CHEN M, GENG Y, LI B S, et al. Research on lateral load-resisting performance of cruciform cold-formed steel built-up columns[J]. Journal of Constructional Steel Research, 2025, 229: 109529.1-109529.19.
    [27] 湖北省发展计划委员会, 中南建筑设计院. 冷弯薄壁型钢结构技术规范: GB 50018—2002[S]. 北京: 中国标准出版社, 2003.
    [28] North American Specification (NAS). North American specification for the design of cold-formed steel structural members[S]. Washington D. C.: American Iron and Steel Institute, 2016
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  36
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-21
  • 修回日期:  2025-03-07
  • 网络出版日期:  2025-09-29

目录

    /

    返回文章
    返回