• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

面向车辆NVH的声学超结构电学孪生研究与应用

邓世奇 吴昱东 胡豪 祁治澄 丁渭平

邓世奇, 吴昱东, 胡豪, 祁治澄, 丁渭平. 面向车辆NVH的声学超结构电学孪生研究与应用[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240473
引用本文: 邓世奇, 吴昱东, 胡豪, 祁治澄, 丁渭平. 面向车辆NVH的声学超结构电学孪生研究与应用[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240473
DENG Shiqi, WU Yudong, HU Hao, QI Zhicheng, DING Weiping. Research and Application of Electrical Twin with Acoustic Metastructures for Vehicle NVH[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240473
Citation: DENG Shiqi, WU Yudong, HU Hao, QI Zhicheng, DING Weiping. Research and Application of Electrical Twin with Acoustic Metastructures for Vehicle NVH[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240473

面向车辆NVH的声学超结构电学孪生研究与应用

doi: 10.3969/j.issn.0258-2724.20240473
基金项目: 四川省自然科学基金面上项目(2023NSFSC0395,2022NSFSC1892)
详细信息
    作者简介:

    邓世奇(1997—),男,博士研究生,研究方向为车辆噪声振动与声振舒适性,E-mail:shiqi_deng@yeah.net

    通讯作者:

    吴昱东(1989—),男,讲师,博士,研究方向为车辆噪声振动与声振舒适性,E-mail:ydwu@swjtu.edu.cn

  • 中图分类号: U461.4

Research and Application of Electrical Twin with Acoustic Metastructures for Vehicle NVH

  • 摘要:

    声学超结构因其独特的波操纵特性在车辆噪声、振动和声振舒适性(NVH)领域备受关注,但被动式声学超结构的低频带隙带宽窄且不可调,限制了其进一步的发展和应用. 为克服此难题,提出电控型声学超结构以灵活调谐带隙,并建立相应的电学孪生理论. 从经典的机电类比理论出发,基于有限差分法对Kirchhoff-love薄板建立了二维孪生电路;在此基础上,串联LCR谐振回路以形成超结构单元的孪生电路,引入可调电容以实现对电学带隙的调谐;从孪生电路中衍生出一种具体形态为螺旋型的电控超结构,并进行了仿真验证和应用实验. 结果表明:孪生电路可视为超结构在电学域中的精确映射,通过电控方式可有效调节超结构等效刚度,进而实现带隙调谐,其调谐规律可通过孪生电路进行高效预测与分析;所设计的螺旋型电控超结构对电动座椅的阶次跟踪降噪效果显著,在200~460 Hz的宽频范围内声压级平均下降约7.4 dB(A). 所提出的孪生电路有助于电控超结构的机电一体化设计,同时也为不同形态的电控超结构研究提供了理论范式.

     

  • 图 1  正方形板单元的差分节点

    Figure 1.  Differential nodes of a square plate unit

    图 2  薄板孪生电路

    Figure 2.  Twin circuit of a thin plate

    图 3  超结构单元的孪生电路及其衍生力学模型

    Figure 3.  Twin circuit of a metastructure unit and its derived mechanical model

    图 4  电控超结构的具体形态

    Figure 4.  Concrete configuration of electrically controlled metastructure

    图 5  螺旋梁变刚度曲线

    Figure 5.  Variable stiffness curve of spiral beam

    图 6  力学模型及其孪生电路

    Figure 6.  Mechanical model and its twin circuit

    图 7  超结构带隙特征及其与电流传递率的对比

    Figure 7.  Bandgap characteristics of metastructure and their comparison with current transmissibility

    图 8  实验布置

    Figure 8.  Experimental configuration

    图 9  应用电控超结构的阶次跟踪降噪效果

    Figure 9.  Order-tracking noise reduction effect using electrically controlled metastructure

  • [1] HAZRA S, REDDY J K. A review paper on recent research of noise and vibration in ElectricVehicle powertrain mounting system[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2021, 6(1): 3-22. doi: 10.4271/10-06-01-0001
    [2] 黄思怡, 康健强. 电动汽车振动特性及NVH性能控制研究进展[J]. 汽车实用技术, 2023, 48(17): 200-205.

    HUANG Siyi, KANG Jianqiang. Research progress of vibration characteristics and NVH performance controlling of electric vehicles[J]. Automobile Applied Technology, 2023, 48(17): 200-205.
    [3] 《中国公路学报》编辑部. 中国汽车工程学术研究综述•2023[J]. 中国公路学报, 2023, 36(11): 1-192.

    Editorial Department of China Journal of Highway and Transport. Review on China’s automotive engineering research progress: 2023[J]. China Journal of Highway and Transport, 2023, 36(11): 1-192.
    [4] LIAO Y, HUANG H B, CHANG G B, et al. Research on low-frequency noise control of automobiles based on acoustic metamaterial[J]. Materials, 2022, 15(9): 3261. doi: 10.3390/ma15093261
    [5] 农兴中, 李祥, 刘堂辉, 等. 浮置板下声子晶体隔振器带隙特性研究[J]. 西南交通大学学报, 2019, 54(6): 1203-1209, 1276.

    NONG Xingzhong, LI Xiang, LIU Tanghui, et al. Band gap characteristics of vibration isolators of phononic crystals under floating slab[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1203-1209, 1276.
    [6] OUDICH M, GERARD N J, DENG Y C, et al. Tailoring structure-borne sound through bandgap engineering in phononic crystals and metamaterials: a comprehensive review[J]. Advanced Functional Materials, 2023, 33(2): 2206309. doi: 10.1002/adfm.202206309
    [7] VALIPOUR A, KARGOZARFARD M H, RAKHSHI M, et al. Metamaterials and their applications: an overview[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2022, 236(11): 2171-2210. doi: 10.1177/1464420721995858
    [8] JI G S, HUBER J. Recent progress in acoustic metamaterials and active piezoelectric acoustic metamaterials-A review[J]. Applied Materials Today, 2022, 26: 101260. doi: 10.1016/j.apmt.2021.101260
    [9] SONG H, DING X D, CUI Z X, et al. Research progress and development trends of acoustic metamaterials[J]. Molecules, 2021, 26(13): 4018. doi: 10.3390/molecules26134018
    [10] WANG X Z, ZHANG C, RUI S T, et al. Multi-scale material/structure integrated elastic metamaterial for broadband vibration absorbing[J]. Materials & Design, 2024, 238: 112705.
    [11] ZHANG C, ZHANG D, YIN F J, et al. “Borrow-force-attack-force” by multi-scale elastic metamaterial with nonlinear damping[J]. Composites Part B: Engineering, 2025, 288: 111884. doi: 10.1016/j.compositesb.2024.111884
    [12] HAN D Y, PENG Y Y, LIU G S, et al. Tunable pipe-type acoustic metamaterials based on piezoelectric composite side-branches[J]. Journal of Applied Physics, 2021, 129(8): 084505. doi: 10.1063/5.0039751
    [13] HU G B, AUSTIN A C M, SOROKIN V, et al. Metamaterial beam with graded local resonators for broadband vibration suppression[J]. Mechanical Systems and Signal Processing, 2021, 146: 106982. doi: 10.1016/j.ymssp.2020.106982
    [14] REN T, LIU C C, LI F M, et al. Active tunability of band gaps for a novel elastic metamaterial plate[J]. Acta Mechanica, 2020, 231(10): 4035-4053. doi: 10.1007/s00707-020-02728-1
    [15] 张明, 谢延松, 李洪涛, 等. 一种高静-低动刚度磁弹簧的建模与特性分析[J]. 西南交通大学学报, 2023, 58(4): 933-939, 946.

    ZHANG Ming, XIE Yansong, LI Hongtao, et al. Modeling and characteristic analysis of a magnetic spring with high static stiffness and low dynamic stiffness[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 933-939, 946.
    [16] 董小闵, 王凯翔, 李坪洋. 基于磁流变复合材料的磁流变阻尼器设计[J]. 西南交通大学学报, 2023, 58(4): 896-902.

    DONG Xiaomin, WANG Kaixiang, LI Pingyang. Design of magnetorheological damper based on magnetorheological composite materials[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 896-902.
    [17] 张明, 李洪涛, 崔浩东, 等. 一种电磁式高静-低动刚度隔振系统建模与特性分析[J]. 西南交通大学学报, 2024, 59(4): 858-866.

    ZHANG Ming, LI Hongtao, CUI Haodong, et al. Modeling and characteristic analysis of an electromagnetic isolation system with high static stiffness and low dynamic stiffness[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 858-866.
    [18] WANG K, ZHOU J X, OUYANG H J, et al. A semi-active metamaterial beam with electromagnetic quasi-zero-stiffness resonators for ultralow-frequency band gap tuning[J]. International Journal of Mechanical Sciences, 2020, 176: 105548. doi: 10.1016/j.ijmecsci.2020.105548
    [19] XIA B Z, CHEN N, XIE L X, et al. Temperature-controlled tunable acoustic metamaterial with active band gap and negative bulk modulus[J]. Applied Acoustics, 2016, 112: 1-9. doi: 10.1016/j.apacoust.2016.05.005
    [20] NING S W, YAN Z M, CHU D Y, et al. Ultralow-frequency tunable acoustic metamaterials through tuning gauge pressure and gas temperature[J]. Extreme Mechanics Letters, 2021, 44: 101218. doi: 10.1016/j.eml.2021.101218
    [21] SHRESTHA M, LAU G K, CHIN Y W, et al. A tunable acoustic absorber using reconfigurable dielectric elastomer actuated petals[J]. Communications Engineering, 2024, 3: 11. doi: 10.1038/s44172-023-00159-z
    [22] WANG X Z, RUI S T, YANG S K, et al. A low-frequency pure metal metamaterial absorber with continuously tunable stiffness[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1209-1224. doi: 10.1007/s10483-024-3158-7
    [23] 张敏, 温晓东, 孙小伟, 等. 复合柱局域共振声子晶体的超宽带隙与可调性研究[J]. 噪声与振动控制, 2024, 44(4): 96-102.

    ZHANG Min, WEN Xiaodong, SUN Xiaowei, et al. Study on characteristics and tunability of ultra-wide band gaps for composite column locally resonant phononic crystals[J]. Noise and Vibration Control, 2024, 44(4): 96-102.
    [24] CHU J M, ZHOU G J, LIANG X, et al. A metamaterial for low-frequency vibration damping[J]. Materials Today Communications, 2023, 36: 106464. doi: 10.1016/j.mtcomm.2023.106464
    [25] YAO J Y, XU K, YAO D H, et al. A metamaterial cylindrical shell with multiple graded resonators for broadband longitudinal wave attenuation[J]. Frontiers in Physics, 2023, 11: 1133586. doi: 10.3389/fphy.2023.1133586
    [26] MIAO X J, ZHOU Z T, ZHANG Y Y, et al. A new-type lightweight helical elastic metamaterial with ultra-low-frequency bandgaps[J]. Physica Status Solidi (b), 2023, 260(1): 2200355. doi: 10.1002/pssb.202200355
    [27] YAN G W, YAO S, LI Y L. Propagation of elastic waves in metamaterial plates with various lattices for low-frequency vibration attenuation[J]. Journal of Sound and Vibration, 2022, 536: 117140. doi: 10.1016/j.jsv.2022.117140
    [28] DENG S Q, HE Y Y, WU Y D, et al. A locally resonant metamaterial beam with tunable electromagnetic stiffness based on the electromechanical analogy network[J]. Smart Materials and Structures, 2024, 33(5): 055052. doi: 10.1088/1361-665X/ad3ecc
    [29] LOSSOUARN B, DEÜ J F, AUCEJO M, et al. Multimodal vibration damping of a plate by piezoelectric coupling to its analogous electrical network[J]. Smart Materials and Structures, 2016, 25(11): 115042. doi: 10.1088/0964-1726/25/11/115042
    [30] 吴九汇, 张思文, 沈礼. 螺旋局域共振单元声子晶体板结构的低频振动带隙特性研究[J]. 机械工程学报, 2013, 49(10): 62-69. doi: 10.3901/JME.2013.10.062

    WU Jiuhui, ZHANG Siwen, SHEN Li. Low-frequency vibration characteristics of periodic spiral resonators in phononic crystal plates[J]. Journal of Mechanical Engineering, 2013, 49(10): 62-69. doi: 10.3901/JME.2013.10.062
  • 加载中
图(9)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  67
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-18
  • 修回日期:  2025-01-20
  • 网络出版日期:  2025-11-06

目录

    /

    返回文章
    返回