• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于连续-非连续变形分析的粗粒料复杂力学行为研究

徐栋栋 卢波 邬爱清 朱杰兵 汪斌

徐栋栋, 卢波, 邬爱清, 朱杰兵, 汪斌. 基于连续-非连续变形分析的粗粒料复杂力学行为研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240448
引用本文: 徐栋栋, 卢波, 邬爱清, 朱杰兵, 汪斌. 基于连续-非连续变形分析的粗粒料复杂力学行为研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240448
XU Dongdong, LU Bo, WU Aiqing, ZHU Jiebing, WANG Bin. Study on Complex Mechanical Behavior of Coarse Granular Materials Based on Continuous-Discontinuous Deformation Analysis[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240448
Citation: XU Dongdong, LU Bo, WU Aiqing, ZHU Jiebing, WANG Bin. Study on Complex Mechanical Behavior of Coarse Granular Materials Based on Continuous-Discontinuous Deformation Analysis[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240448

基于连续-非连续变形分析的粗粒料复杂力学行为研究

doi: 10.3969/j.issn.0258-2724.20240448
基金项目: 国家自然科学基金项目(12572453,12072047,U2340226,42277186);中央级公益性科研院所基本科研业务费项目(CKSF20241014/YT,CKSF20241016/YT);中国长江三峡集团有限公司科研项目(0799291)
详细信息
    通讯作者:

    徐栋栋(1986—),男,教授级高级工程师,研究方向为计算岩土力学,E-mail: xdhappy717@163.com

  • 中图分类号: TU432

Study on Complex Mechanical Behavior of Coarse Granular Materials Based on Continuous-Discontinuous Deformation Analysis

  • 摘要:

    为系统揭示堆石坝粗粒料的细观力学机制和宏观力学响应机理,克服传统连续介质方法在力链演化与颗粒破碎模拟方面的局限性,发展了一种适用于粗粒料三轴试验的连续-非连续变形分析方法. 该方法在传统非连续变形分析方法(DDA)基础上,引入混合位移模式以区分不同块体的力学响应;采用临界阻尼加速计算收敛,并提出新的连续-非连续模拟技术以刻画颗粒破碎过程;通过常规三轴数值试验系统分析粗粒料在加载过程中的变形演化、力链发展、颗粒破碎及剪切带形成等力学行为,重点探讨尺寸效应与端部摩阻力的影响. 结果表明:该方法模拟结果与试验数据结果吻合良好,能够有效反映粗粒料的宏观力学响应与细观机制;围压0.4 MPa时,尺寸效应可使峰值应力提高21.3%,而在3.0 MPa高围压下对峰值应力影响不显著;端部摩阻力在3.0 MPa围压下可使峰值应力提升约7.4%. 研究成果为深入理解粗粒料力学特性提供了有效的数值分析手段.

     

  • 图 1  连续到非连续模拟示意

    Figure 1.  Simulations from continuum to discontinuum

    图 2  二维试样制备流程

    Figure 2.  Two-dimensional sample preparation

    图 3  边界条件

    Figure 3.  Boundary conditions

    图 4  轴向加载曲线示意

    Figure 4.  Axial loading curve

    图 5  DDA与室内三轴试验的偏应力-应变曲线对比

    Figure 5.  Comparison of deviatoric stress–strain curves between DDA and laboratory triaxial tests

    图 6  强度包络线

    Figure 6.  Strength envelope curves

    图 7  粗粒料x位移演化过程

    Figure 7.  Evolution of x-displacement of coarse granular materials

    图 8  粗粒料y位移演化过程

    Figure 8.  Evolution of y-displacement of coarse granular materials

    图 9  粗粒料颗粒旋转角度演化过程

    Figure 9.  Evolution of particle rotation angles of coarse granular materials

    图 10  不同围压下粗粒料力链演化过程

    Figure 10.  Evolution of force chains of coarse granular materials under varying confining pressure

    图 11  颗粒破碎演化过程

    Figure 11.  Evolution of particle breakage

    图 12  不同围压下试样x方向位移云图

    Figure 12.  x-displacement of samples under varying confining pressure

    图 13  不同缩放比例下的偏应力-应变曲线

    Figure 13.  Deviatoric stress–strain curves at different scales

    图 14  无端部摩阻力时位移和旋转角云图

    Figure 14.  Displacement and rotation angle with no end friction

    图 15  有无摩阻力的偏应力-应变对比曲线

    Figure 15.  Comparison of deviatoric stress–strain curves with and without friction

  • [1] 程展林, 丁红顺. 堆石料蠕变特性试验研究[J]. 岩土工程学报, 2004, 26(4): 473-476. doi: 10.11988/ckyyb.20221305

    CHENG Zhanlin, DING Hongshun. Creep test for rockfill[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 473-476. doi: 10.11988/ckyyb.20221305
    [2] CUNDALL P A, HART R D. Numerical modeling of discontinua[M]//Analysis and Design Methods. Amsterdam: Elsevier, 1993: 231-243.
    [3] TAVAREZ F A, PLESHA M E. Discrete element method for modelling solid and particulate materials[J]. International Journal for Numerical Methods in Engineering, 2007, 70(4): 379-404. doi: 10.1002/nme.1881
    [4] XU M, HONG J T, SONG E X. DEM study on the effect of particle breakage on the macro- and micro-behavior of rockfill sheared along different stress paths[J]. Computers and Geotechnics, 2017, 89: 113-127. doi: 10.1016/j.compgeo.2017.04.012
    [5] MANSO J, MARCELINO J, CALDEIRA L. Crushing and oedometer compression of rockfill using DEM[J]. Computers and Geotechnics, 2018, 101: 11-22. doi: 10.1016/j.compgeo.2018.04.009
    [6] ZHAO Z H, SONG E X. Particle mechanics modeling of creep behavior of rockfill materials under dry and wet conditions[J]. Computers and Geotechnics, 2015, 68: 137-146. doi: 10.1016/j.compgeo.2015.04.008
    [7] SHAO X Q, CHI S C, TAO Y, et al. DEM simulation of the size effect on the wetting deformation of rockfill materials based on single-particle crushing tests[J]. Computers and Geotechnics, 2020, 123: 103429. doi: 10.1016/j.compgeo.2019.103429
    [8] MA C H, YANG J, ZENZ G, et al. Calibration of the microparameters of the discrete element method using a relevance vector machine and its application to rockfill materials[J]. Advances in Engineering Software, 2020, 147: 102833. doi: 10.1016/j.advengsoft.2020.102833
    [9] 杨冰, 杨军, 常在, 等. 土石混合体压缩性的三维颗粒力学研究[J]. 岩土力学, 2010, 31(5): 1645-1650.

    YANG Bing, YANG Jun, CHANG Zai, et al. 3-D granular simulation for compressibility of soil-aggregate mixture[J]. Rock and Soil Mechanics, 2010, 31(5): 1645-1650.
    [10] MUNJIZA A, JOHN N W M. Mesh size sensitivity of the combined FEM/DEM fracture and fragmentation algorithms[J]. Engineering Fracture Mechanics, 2002, 69(2): 281-295. doi: 10.1016/S0013-7944(01)00090-X
    [11] LISJAK A, TATONE B S A, GRASSELLI G, et al. Numerical modelling of the anisotropic mechanical behaviour of opalinus clay at the laboratory-scale using FEM/DEM[J]. Rock Mechanics and Rock Engineering, 2014, 47(1): 187-206. doi: 10.1007/s00603-012-0354-7
    [12] MAHABADI O K, COTTRELL B E, GRASSELLI G. An example of realistic modelling of rock dynamics problems: FEM/DEM simulation of dynamic Brazilian test on barre granite[J]. Rock Mechanics and Rock Engineering, 2010, 43(6): 707-716. doi: 10.1007/s00603-010-0092-7
    [13] ZHOU W, MA G, CHANG X L, et al. Discrete modeling of rockfill materials considering the irregular shaped particles and their crushability[J]. Engineering Computations, 2015, 32(4): 1104-1120. doi: 10.1108/EC-04-2014-0086
    [14] MA G, ZHOU W, CHANG X L. Modeling the particle breakage of rockfill materials with the cohesive crack model[J]. Computers and Geotechnics, 2014, 61: 132-143. doi: 10.1016/j.compgeo.2014.05.006
    [15] MA G, ZHOU W, CHANG X L, et al. Combined FEM/DEM modeling of triaxial compression tests for rockfills with polyhedral particles[J]. International Journal of Geomechanics, 2014, 14(4): 04014014. doi: 10.1061/(ASCE)GM.1943-5622.0000372
    [16] 严成增, 郑宏, 孙冠华, 等. 粗粒料多边形表征及二维FEM/DEM分析[J]. 岩土力学, 2015, 36(增2): 95-103. doi: 10.16285/j.rsm.2015.S2.012

    YAN Chengzeng, ZHENG Hong, SUN Guanhua, et al. Polygon characterization of coarse aggregate and two-dimensional combined finite discrete element method analysis[J]. Rock and Soil Mechanics, 2015, 36(S2): 95-103. doi: 10.16285/j.rsm.2015.S2.012
    [17] 郭培玺, 林绍忠. 粗粒料颗粒随机分布的数值模拟[J]. 长江科学院院报, 2007, 24(4): 50-52, 56.

    GUO Peixi, LIN Shaozhong. Numerical simulation on random distribution of coarse granular material particles[J]. Journal of Yangtze River Scientific Research Institute, 2007, 24(4): 50-52,56.
    [18] 郭培玺. 基于DDA的粗粒料力学特性研究[D]. 南京: 河海大学, 2016.
    [19] 苏明. 考虑颗粒破碎的粗粒料力学特性数值试验初步研究[D]. 武汉: 长江科学院, 2014.
    [20] SHI G H, GOODMAN R E. Two dimensional discontinuous deformation analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1985, 9(6): 541-556. doi: 10.1002/nag.1610090604
    [21] 美)石根华著, 裴觉民译. 数值流形方法与非连续变形分析[M]. 北京: 清华大学出版社, 1997.
    [22] LIN S Z, XIE Z Q. Performance of DDA time integration[J]. Science China Technological Sciences, 2015, 58(9): 1558-1566. doi: 10.1007/s11431-015-5893-1
    [23] CHAGRA W. Accurate calculation of the settling time of a linear system using new expressions and iterative algorithms[J]. Circuits, Systems, and Signal Processing, 2018, 37(1): 408-431. doi: 10.1007/s00034-017-0560-3
  • 加载中
图(15)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  16
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-09
  • 网络出版日期:  2026-01-12

目录

    /

    返回文章
    返回