• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

高速道岔焊接接头区轮轨接触-冲击瞬态响应分析

高原 廖涛 王树国 司道林

高原, 廖涛, 王树国, 司道林. 高速道岔焊接接头区轮轨接触-冲击瞬态响应分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240446
引用本文: 高原, 廖涛, 王树国, 司道林. 高速道岔焊接接头区轮轨接触-冲击瞬态响应分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240446
GAO Yuan, LIAO Tao, WANG Shuguo, SI Daolin. Transient Respons Analysis of Wheel-Rail Contact and Impact in Welded Joint Area of High-Speed Turnouts[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240446
Citation: GAO Yuan, LIAO Tao, WANG Shuguo, SI Daolin. Transient Respons Analysis of Wheel-Rail Contact and Impact in Welded Joint Area of High-Speed Turnouts[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240446

高速道岔焊接接头区轮轨接触-冲击瞬态响应分析

doi: 10.3969/j.issn.0258-2724.20240446
基金项目: 国家自然科学基金青年基金项目(52208449)
详细信息
    作者简介:

    高原(1994—),男,博士研究生,研究方向为道路与铁道工程,E-mail:563021287@qq.com

  • 中图分类号: xxx

Transient Respons Analysis of Wheel-Rail Contact and Impact in Welded Joint Area of High-Speed Turnouts

  • 摘要:

    高速铁路无缝道岔与相邻轨条的连接质量是确保列车平稳运行的关键结构,而焊接是广泛存在于高速道岔区的主要连接方式之一. 为研究焊接不平顺引起的轮轨冲击问题对高速道岔行车安全性和稳定性的影响,基于显示积分算法构建了考虑实际焊接接头不平顺的轮轨冲击模型;分析了不同焊接不平顺下的轮轨动态响应在时、频域的分布特性,并结合现场试验对仿真结果进行了验证;探明了高速条件下焊接接头几何不平顺对轮轨动态冲击行为和钢轨受力特性的影响. 研究结果表明:轴箱加速度时频图主要存在三个明显的高频振动能量峰,其频率主要集中在300、750 Hz和1200 Hz附近;结合高速铁路维修规则,基于动力学仿真结果确定了400公里时速条件下高速铁路焊缝限值,1 m直尺测量矢度条件下,凸型焊接接头不平顺限值为0.174 mm,凹形焊接接头不平顺限值为0.34 mm.

     

  • 图 1  焊接接头实测几何不平顺

    Figure 1.  Measured geometric irregularities of welded joints

    图 2  接头几何不平顺三维曲面

    Figure 2.  Three-dimensional surface of geometric irregularities of joints

    图 3  显式有限元模型

    Figure 3.  Explicit finite element model

    图 4  接头钢轨位移和加速度测试

    Figure 4.  Test of displacement and acceleration of rail joint

    图 5  接头钢轨位移和加速度结果对比

    Figure 5.  Comparison of displacement and acceleration of rail joint

    图 6  接头轮轨力时程曲线图

    Figure 6.  Time history curves of wheel-rail force of joint

    图 7  轴箱振动加速度计算结果

    Figure 7.  Calculation results of axle box vibration acceleration

    图 8  轴箱振动加速度时频图

    Figure 8.  Time-frequency diagrams of axle box vibration acceleration

    图 9  焊接不平顺限值分析

    Figure 9.  Safety limit analysis of welded joint irregularities

    表  1  材料参数表

    Table  1.   Parameters of materails

    类型 弹性模量/
    GPa
    密度/
    (kg•m−3
    泊松比 屈服强度/
    MPa
    抗拉强度/
    MPa
    母材 245 7850 0.308 584 1004
    焊缝材料 240 7850 0.308 602 866
    下载: 导出CSV

    表  2  模型参数

    Table  2.   Parameters of model

    模型参数 数值
    簧上质量/(kg) 8000
    一系悬挂系统 刚度系数/(MN•m−1 0.88
    阻尼系数/(kN•s•m−1 4
    簧下车轮质量/(kg) 356.4
    阻尼常数 0.0001
    轨底扣件胶垫 刚度系数(MN•m−1 27
    阻尼系数(kN•s•m−1 0.17
    下载: 导出CSV

    表  3  焊接接头不平顺计算工况

    Table  3.   Calculation conditions of welded joint irregularities mm

    工况 凸型波深/mm 凹型波深/mm
    1 −0.05 0.15
    2 −0.10 0.20
    3 −0.12 0.25
    4 −0.15 0.30
    5 −0.18 0.35
    6 −0.20 0.40
    7 −0.25 0.45
    下载: 导出CSV
  • [1] 王平, 陈嵘, 徐井芒, 等. 高速铁路道岔系统理论与工程实践研究综述[J]. 西南交通大学学报, 2016, 51(2): 357-372. doi: 10.3969/j.issn.0258-2724.2016.02.015

    WANG Ping, CHEN Rong, XU Jingmang, et al. Theories and engineering practices of high-speed railway turnout system: survey and review[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 357-372. doi: 10.3969/j.issn.0258-2724.2016.02.015
    [2] 龚继军, 赵冠闯, 李建辉, 等. 高速铁路道岔打磨对钢轨平顺性及轮轨动力学性能的影响[J]. 铁道建筑, 2023, 63(5): 39-44. doi: 10.3969/j.issn.1003-1995.2023.05.08

    GONG Jijun, ZHAO Guanchuang, LI Jianhui, et al. Influence of high speed railway turnout grinding on rail irregularity and wheel-rail dynamic performance[J]. Railway Engineering, 2023, 63(5): 39-44. doi: 10.3969/j.issn.1003-1995.2023.05.08
    [3] 徐井芒, 郑兆光, 赖军, 等. 轨道参数对高速道岔轮轨接触行为的影响[J]. 西南交通大学学报, 2022, 57(5): 990-999.

    XU Jingmang, ZHENG Zhaoguang, LAI Jun, et al. Influence of track parameters on wheel/rail contact behavior of high-speed turnout[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 990-999.
    [4] CHEN J Y, WANG P, XU J M, et al. Simulation of vehicle-turnout coupled dynamics considering the flexibility of wheelsets and turnouts[J]. Vehicle System Dynamics, 2023, 61(3): 739-764. doi: 10.1080/00423114.2021.2014898
    [5] LIAO T, SONG J, LAI J, et al. Numerical investigation of the transient wheel-rail impact behaviour in high-speed turnouts caused by a bonded insulated rail joint[J]. Vehicle System Dynamics, 2023, 61(12): 3025-3046. doi: 10.1080/00423114.2022.2152193
    [6] 冯仲伟. CR450动车组新技术部件换装科学研究试验[R]. 北京: 中国铁道科学研究院集团有限公司铁道建筑研究所, 2023.
    [7] SARIKAVAK Y, TURKBAS O S, COGUN C. Influence of welding on microstructure and strength of rail steel[J]. Construction and Building Materials, 2020, 243: 118220. doi: 10.1016/j.conbuildmat.2020.118220
    [8] HOELZL C, ARCIERI G, ANCU L, et al. Fusing expert knowledge with monitoring data for condition assessment of railway welds[J]. Sensors, 2023, 23(5): 2672. doi: 10.3390/s23052672
    [9] ZHAO J Z, PANG X, FU P L, et al. Dynamic constitutive model of U75VG rail flash-butt welded joint and its application in wheel-rail transient rolling contact simulation[J]. Engineering Failure Analysis, 2022, 134: 106078. doi: 10.1016/j.engfailanal.2022.106078
    [10] LULU G B, CHEN R, WANG P, et al. Influence of out-of-round wheels on the vehicle–flexible track interaction at rail welds[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2021, 235(3): 313-327. doi: 10.1177/0954409720924300
    [11] CHEN Y C, KUANG J H. Contact stress variations near the insulated rail joints[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2002, 216(4): 265-273. doi: 10.1243/095440902321029217
    [12] CHEN Y C, CHEN L W. Effects of insulated rail joint on the wheel/rail contact stresses under the condition of partial slip[J]. Wear, 2006, 260(11/12): 1267-1273. doi: 10.1016/j.wear.2005.08.005
    [13] SU H, PUN C L, MUTTON P, et al. Numerical study on the ratcheting performance of rail flash butt welds in heavy haul operations[J]. International Journal of Mechanical Sciences, 2021, 199: 106434. doi: 10.1016/j.ijmecsci.2021.106434
    [14] YANG Y F, LING L, YANG Y F, et al. Effects of wheelset flexibility on locomotive–track interaction due to rail weld irregularities[J]. Vehicle System Dynamics, 2022, 60(9): 3088-3108. doi: 10.1080/00423114.2021.1939063
    [15] YANG Z, DENG X Y, LI Z L. Numerical modeling of dynamic frictional rolling contact with an explicit finite element method[J]. Tribology International, 2019, 129: 214-231. doi: 10.1016/j.triboint.2018.08.028
    [16] YANG Z, BOOGAARD A, CHEN R, et al. Numerical and experimental study of wheel-rail impact vibration and noise generated at an insulated rail joint[J]. International Journal of Impact Engineering, 2018, 113: 29-39. doi: 10.1016/j.ijimpeng.2017.11.008
    [17] 邢丽贤. 提速条件下钢轨伤损特点及钢轨伤损分类的研究[D]. 北京: 中国铁道科学研究院, 2008.
    [18] 金学松, 刘启跃. 轮轨摩擦学[M]. 北京: 中国铁道出版社, 2004: 169.
    [19] 张玉华, 李澳, 胡伟平. 钢轨铝热焊焊缝材料与母材力学性能对比分析[J]. 高速铁路新材料, 2023, 2(2): 79-84. doi: 10.3969/j.issn.2097-0846.2023.02.015

    ZHANG Yuhua, LI Ao, HU Weiping. Comparative analysis of mechanical properties of Thermit welding material and base material[J]. Advanced Materials of High Speed Railway, 2023, 2(2): 79-84. doi: 10.3969/j.issn.2097-0846.2023.02.015
    [20] 高建敏, 翟婉明. 高速铁路钢轨焊接区不平顺的动力效应及其安全限值研究[J]. 中国科学: 技术科学, 2014, 44(7): 697-706. doi: 10.1360/N092014-00081

    GAO Jianmin, ZHAI Wanming. Dynamic effect and safety limits of rail weld irregularity on high-speed railways[J]. Scientia Sinica (Technologica), 2014, 44(7): 697-706. doi: 10.1360/N092014-00081
    [21] AN B Y, WANG P, XIAO J L, et al. Dynamic response of wheel-rail interaction at rail weld in high-speed railway[J]. Shock and Vibration, 2017, 2017(1): 5634726.
    [22] YANG Z, BOOGAARD A, WEI Z L, et al. Numerical study of wheel-rail impact contact solutions at an insulated rail joint[J]. International Journal of Mechanical Sciences, 2018, 138: 310-322. doi: 10.1016/j.ijmecsci.2018.02.025
    [23] XU J M, WANG K, LIANG X Y, et al. Influence of viscoelastic mechanical properties of rail pads on wheel and corrugated rail rolling contact at high speeds[J]. Tribology International, 2020, 151: 106523. doi: 10.1016/j.triboint.2020.106523
    [24] KAEWUNRUEN S, CHIENGSON C. Railway track inspection and maintenance priorities due to dynamic coupling effects of dipped rails and differential track settlements[J]. Engineering Failure Analysis, 2018, 93: 157-171. doi: 10.1016/j.engfailanal.2018.07.009
    [25] 徐井芒, 梁新缘, 王凯, 等. 扣件刚度非线性对波磨区轮轨瞬态滚动接触行为的影响[J]. 西南交通大学学报, 2024, 59(2): 247-255.

    XU Jingmang, LIANG Xinyuan, WANG Kai, et al. Influence of fastener stiffness nonlinearity on wheel–rail transient rolling contact behavior in corrugated area[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 247-255.
    [26] 胡晓依, 成棣, 孟凡迪, 等. 时速400公里高速铁路轮轨周期性短波不平顺的安全限值研究[J]. 西南交通大学学报, 2025, 60(6): 1581-1592. doi: 10.3969/j.issn.0258-2724.20230676

    HU Xiaoyi, CHENG Di, MENG Fandi, et al. Safety limit for periodic short-wave irregularity of wheel and rail for high-speed railways at 400 km/h[J]. Journal of Southwest Jiaotong University, 2025, 60(6): 1581-1592. doi: 10.3969/j.issn.0258-2724.20230676
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  12
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-11
  • 修回日期:  2024-12-24
  • 网络出版日期:  2026-01-24

目录

    /

    返回文章
    返回