• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

折板型竖井内高压截留气团释放过程数值模拟

杨乾 杨庆华 陈峰

杨乾, 杨庆华, 陈峰. 折板型竖井内高压截留气团释放过程数值模拟[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240426
引用本文: 杨乾, 杨庆华, 陈峰. 折板型竖井内高压截留气团释放过程数值模拟[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240426
YANG Qian, YANG Qinghua, CHEN Feng. Numerical Simulation of Geyser Process Caused by High-Pressure Entrapped Air Release in Baffle-Drop Shafts[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240426
Citation: YANG Qian, YANG Qinghua, CHEN Feng. Numerical Simulation of Geyser Process Caused by High-Pressure Entrapped Air Release in Baffle-Drop Shafts[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240426

折板型竖井内高压截留气团释放过程数值模拟

doi: 10.3969/j.issn.0258-2724.20240426
基金项目: 国家自然科学基金项目(51478403);四川省自然科学基金项目(2024NSFSC0985,2024NSFSC0113,2023NSFSC0787)
详细信息
    作者简介:

    杨乾(1990—),男,高级工程师,博士,研究方向为市政流体力学,E-mail:yangqian-swjtu@foxmail.com

    通讯作者:

    杨庆华(1976—),男,副教授,博士,研究方向为市政流体力学,E-mail:qhyang@home.swjtu.edu.cn

  • 中图分类号: TU992.1

Numerical Simulation of Geyser Process Caused by High-Pressure Entrapped Air Release in Baffle-Drop Shafts

  • 摘要:

    为解决折板型竖井在气爆过程中产生高速气水混合物而导致的结构及地面安全风险,采用数值模拟方法系统研究竖井内水体空泡份额和联络管直径对竖井压强和气爆强度的影响程度,分析竖井底部折板冲击荷载变化规律,提出在竖井中部设置限流孔板以控制气爆喷射强度. 研究结果表明:联络管压强随着空泡份额的提升先减小后增大,并在0.2~0.4内出现最小值;3种不同管径比中,联络管与竖井的直径比为1/2时,气爆喷射强度最为强烈;折板冲击荷载自下而上不断递减,同一折板上靠近中隔板和竖井壁一侧的冲击荷载均大于折板边缘上荷载;在竖井中部设置限流孔板能有效控制气爆强度,同时限流孔板受到的冲击荷载为竖井底部折板荷载的10倍;研究成果为城市深隧排水系统安全运行提供参考.

     

  • 图 1  折板型竖井三维数值模型示意图

    Figure 1.  Sketch of a 3D model for baffle-drop shaft

    图 2  网格独立性验证结果

    Figure 2.  Verification results of mesh independence

    图 3  气爆喷射高度对比

    Figure 3.  Comparison of geyser heights

    图 4  联络管压强时程曲线对比

    Figure 4.  Comparison of time history curves of pressure in connecting pipe

    图 5  各空泡份额对应联络管压强最大值

    Figure 5.  Maximum connecting pipe pressure corresponding to each void fraction

    图 6  各空泡份额对应气爆最大喷射高度

    Figure 6.  Maximum geyser height corresponding to each void fraction

    图 7  不同联络管直径下气爆喷射高度对比

    Figure 7.  Comparison of geyser heights under different connecting pipe diameters

    图 8  折板冲击荷载时程变化曲线

    Figure 8.  Time history curves of impact load on different baffles

    图 9  不同折板冲击荷载分布云图

    Figure 9.  Cloud images of impact load on different baffles

    图 10  不同限流孔板位置对气爆强度影响对比

    Figure 10.  Comparison of effects of throttling orifice positions on geyser strength

    图 11  不同孔板位置折板A冲击荷载时程曲线

    Figure 11.  Time history curves of impact load on baffle A for different orifice positions

    图 12  限流孔板下方荷载时程曲线

    Figure 12.  Time history curves of load on throttling orifice bottom

    表  1  数值模型参数取值

    Table  1.   Parameters value of numerical model

    h*p*V*S*联络管
    接入方式
    空泡份额
    α
    φ*
    0.1670.5,1.0,1.5,2.0,2.5,3.0,3.5,4.00.026,0.052,0.0780.478竖井湿区0,0.2
    0.4,0.6
    0.8
    0.25,0.50,0.75
    0.250
    0.333
    0.417
    下载: 导出CSV
  • [1] 刘家宏, 夏霖, 梅超, 等. 深隧排水系统在城市内涝防治中的作用分析[J]. 应用基础与工程科学学报, 2019, 27(2): 252-263. doi: 10.16058/j.issn.1005-0930.2019.02.002

    LIU Jiahong, XIA Lin, MEI Chao, et al. Effects of deep tunnel drainage system in urban waterlogging prevention[J]. Journal of Basic Science and Engineering, 2019, 27(2): 252-263. doi: 10.16058/j.issn.1005-0930.2019.02.002
    [2] ZHOU F, HICKS F E, STEFFLER P M. Transient flow in a rapidly filling horizontal pipe containing trapped air[J]. Journal of Hydraulic Engineering, 2002, 128(6): 625-634. doi: 10.1061/(ASCE)0733-9429(2002)128:6(625)
    [3] POZOS-ESTRADA O, POTHOF I, FUENTES-MARILES O A, et al. Failure of a drainage tunnel caused by an entrapped air pocket[J]. Urban Water Journal, 2015, 12(6): 446-454. doi: 10.1080/1573062X.2015.1041990
    [4] WRIGHT S J, LEWIS J W, VASCONCELOS J G. Physical processes resulting in geysers in rapidly filling storm-water tunnels[J]. Journal of Irrigation and Drainage Engineering, 2011, 137(3): 199-202. doi: 10.1061/(ASCE)IR.1943-4774.0000176
    [5] LEWIS J W. A Physical investigation of air/water interactions leading to geyser events in rapid filling pipelines (PhD thesis)[D]. Michigan: University of Michigan, 2011.
    [6] CHOSIE C. Investigation on the kinematics of entrapped air pockets in stormwater storage tunnels (master thesis) [D]. Alabama: Auburn University, 2013.
    [7] MARTIN C S. Entrapped air in pipelines[C]// Proceedings of the 2nd International Conference on Pressure Surges. Bedford: British Hydromechanics Research Association, 1976: 15-27.
    [8] ZHOU F, HICKS F E, STEFFLER P M. Transient flow in a rapidly filling horizontal pipe containing trapped air[J]. Journal of Hydraulic Engineering, 2002, 128(6): 625-634. doi: 10.1061/(ASCE)0733-9429(2002)128:6(625)
    [9] WRIGHT S J, VASCONCELOS J, et al. Surges associated with filling of stormwater storage tunnels[J]. Journal of Water Management Modeling, 2003, 115(8): 75-84.
    [10] VASCONCELOS J G. Dynamic approach to the description of flow regime transition in stormwater systems (PhD thesis)[D]. Michigan: University of Michigan, 2005.
    [11] VASCONCELOS J G, WRIGHT S J. Mechanisms for air pocket entrapment in stormwater storage tunnels[C]//World Environmental and Water Resource Congress 2006. Omaha: American Society of Civil Engineers, 2006: 1-10.
    [12] 安瑞冬, 游景皓, 廖磊, 等. 深层隧道排水系统中井隧水力学特性研究[J]. 水利学报, 2021, 52(12): 1498-1507. doi: 10.13243/j.cnki.slxb.20210090

    AN Ruidong, YOU Jinghao, LIAO Lei, et al. Study on the hydraulic characteristics of dropshaft and tunnel in the deep tunnel drainage system[J]. Journal of Hydraulic Engineering, 2021, 52(12): 1498-1507. doi: 10.13243/j.cnki.slxb.20210090
    [13] 蒯重列, 王晓升, 孙振海, 等. 竖井形式对调蓄隧道系统井喷的抑制效果分析[J]. 水利水电科技进展, 2023, 43(3): 77-82.

    KUAI Zhonglie, WANG Xiaosheng, SUN Zhenhai, et al. Suppression effect on the geyser in storage tunnel system with different shaft forms[J]. Advances in Science and Technology of Water Resources, 2023, 43(3): 77-82.
    [14] VASCONCELOS J G, WRIGHT, S J. Laboratory investigation of surges formed during rapid filling of stormwater storage tunnels[C]//Proceedings of the 30th IAHR Congress. Thessaloniki: International Association for Hydro-Environment Engineering and Research , 2003: 1-8.
    [15] VASCONCELOS J G, WRIGHT S J. Surge associated with air expulsion in near-horizontal pipelines[C]// ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference, Honolulu, Hawaii, USA. 2009: 2897-2905. (请核实会议集的名称, 会议举办的年和页码

    Vasconcelos J G, Wright S J. Surge associated with air expulsion in near-horizontal pipelines [C]// Proceedings of FEDSM’03 4th ASME_JSME Joint Fluids Engineering Conference , Honolulu: [s. n. ], 2003: 1-9.
    [16] VASCONCELOS J G, WRIGHT S J. Experimental investigation of surges in a stormwater storage tunnel[J]. Journal of Hydraulic Engineering, 2005, 131(10): 853-861. doi: 10.1061/(ASCE)0733-9429(2005)131:10(853)
    [17] VASCONCELOS J G, LEITE G M. Pressure surges following sudden air pocket entrapment in storm-water tunnels[J]. Journal of Hydraulic Engineering, 2012, 138(12): 1081-1089. doi: 10.1061/(ASCE)HY.1943-7900.0000616
    [18] WRIGHT S J, DETERMAN K V, VARGAS S M. Pressure transients due to compression of trapped air in rapidly filling combined sewer overflow storage tunnels[C]//World Environmental and Water Resources Congress 2011. Palm Springs: American Society of Civil Engineers, 2011: 3550-3559.
    [19] Aimable R, Zech Y. Experimental results on transient and intermittent flows in a sewer pipe model [C]// International Association of Hydraulic Engineering and Research Congress Theme B: Urban and Rural Water Systems for Sustainable Development. Louvain-la-Neuve: International Association of Hydraulic Engineering and Research , 2003: 377-384.
    [20] LI J, MCCORQUODALE A. Modeling mixed flow in storm sewers[J]. Journal of Hydraulic Engineering, 1999, 125(11): 1170-1180. doi: 10.1061/(ASCE)0733-9429(1999)125:11(1170)
    [21] LINGIREDDY S, WOOD D J, ZLOCZOWER N. Pressure surges in pipeline systems resulting from air releases[J]. Journal AWWA, 2004, 96(7): 88-94. doi: 10.1002/j.1551-8833.2004.tb10652.x
    [22] PERRON A, KISS L I, PONCSÁK S. An experimental investigation of the motion of single bubbles under a slightly inclined surface[J]. International Journal of Multiphase Flow, 2006, 32(5): 606-622. doi: 10.1016/j.ijmultiphaseflow.2006.02.001
    [23] 王晓升. 地下调蓄隧道系统滞留气团释放过程的井喷特性研究[D]. 上海: 上海大学, 2020.
    [24] 杨乾, 杨庆华, 郑立宁, 等. 深隧排水折板型竖井泄流消能的试验研究[J]. 西南交通大学学报, 2020, 55(6): 1247-1256.

    YANG Qian, YANG Qinghua, ZHENG Lining, et al. Experimental study on discharge and energy dissipation of baffle-drop shaft in deep tunnel drainage system[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1247-1256.
    [25] 杨乾, 杨庆华. 折板型竖井湍流耗散及消能机理分析[J]. 东南大学学报(自然科学版), 2020, 50(3): 471-481. doi: 10.3969/j.issn.1001-0505.2020.03.009

    YANG Qian, YANG Qinghua. Analysis on turbulent dissipation and energy dissipation mechanism of baffle-drop shaft[J]. Journal of Southeast University (Natural Science Edition), 2020, 50(3): 471-481. doi: 10.3969/j.issn.1001-0505.2020.03.009
    [26] 杨乾, 杨庆华, 赵子成, 等. 泄流过程中折板型竖井水气两相流动特性研究[J]. 工程科学与技术, 2021, 53(1): 75-84. doi: 10.15961/j.jsuese.202000026

    YANG Qian, YANG Qinghua, ZHAO Zicheng, et al. Study on the water–air two-phase flow characteristics in baffle-drop shaft during the drainage[J]. Advanced Engineering Sciences, 2021, 53(1): 75-84. doi: 10.15961/j.jsuese.202000026
    [27] 焦凤, 邓先和. 矩形自支撑缩放管换热器强化传热的结构优化[J]. 化工学报, 2013, 64(7): 2376-2385. doi: 10.3969/j.issn.0438-1157.2013.07.010

    JIAO Feng, DENG Xianhe. Structural optimization of converging-diverging tube based on heat transfer enhancement for self-support rectangle heat exchanger[J]. CIESC Journal, 2013, 64(7): 2376-2385. doi: 10.3969/j.issn.0438-1157.2013.07.010
    [28] 杨乾, 杨庆华, 陈峰, 等. 气爆过程中折板型竖井水力特性试验研究[J]. 西南交通大学学报, 2023, 58(5): 1026-1036. doi: 10.3969/j.issn.0258-2724.20220163

    YANG Qian, YANG Qinghua, CHEN Feng, et al. Experimental study on hydraulic characteristics in baffle-drop shaft during gas explosion[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1026-1036. doi: 10.3969/j.issn.0258-2724.20220163
    [29] LEON A S, ELAYEB I S, TANG Y. An experimental study on violent geysers in vertical pipes[J]. Journal of Hydraulic Research, 2019, 57(3): 283-294. doi: 10.1080/00221686.2018.1494052
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  17
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-30
  • 修回日期:  2025-01-10
  • 网络出版日期:  2026-01-07

目录

    /

    返回文章
    返回