Intelligent Reflecting Surface-Assisted and Artificial Noise Enhancement-Based Beamforming Method in Covert High-Speed Rail Communications
-
摘要:
针对高铁无线通信系统中信息传输普遍存在有效吞吐量低和隐蔽程度受限的问题,以隐蔽需求、最大人工噪声(AN)发射功率和IRS相移的单位模为约束条件,构建以最大化高铁无线通信系统有效吞吐量为目标函数的优化问题,并设计一种基于智能反射面(IRS)辅助及AN增强的高铁无线隐蔽通信波束赋形方法;采用交替优化策略,把优化变量耦合问题拆分为3个子问题,分别为基站波束赋形、IRS相移优化以及AN发射功率优化;在分式规划中,借助二次变换方法将隐蔽需求约束映射在复圆流形上,利用共轭梯度算法(CG)对IRS相移进行优化,并使用Dinkelbach算法对AN发射功率设计并交替迭代优化. 仿真结果表明,该算法的计算复杂度较低,在高速移动环境下,系统有效吞吐量提高了27.31%,隐蔽传输性能得以提升,这对保障高铁无线通信系统安全信息传输具有重要的意义.
Abstract:To address the prevalent issues of low effective throughput and limited covertness in high-speed rail (HSR) wireless communication systems, an optimization problem was formulated to maximize the system’s effective throughput, subject to constraints on the covert requirement, transmit power of the maximum artificial noise (AN), and the unit modulus of the intelligent reflecting surface (IRS) phase shifts, and a beamforming method for covert HSR wireless communications based on IRS assistance and AN enhancement was designed. An alternating optimization strategy was adopted, decomposing the coupled optimization variables into three subproblems, including base station beamforming, IRS phase shift optimization, and AN transmit power optimization. The covert requirement constraint was mapped onto a complex circle manifold using the quadratic transform method from fractional programming. The conjugate gradient (CG) algorithm was employed to optimize the IRS phase shifts. The Dinkelbach algorithm was used to design the AN transmit power, and these steps were iterated alternately. Simulation results demonstrate that the proposed algorithm achieves a lower computational complexity. Under high-speed scenarios, it enhances the system’s effective throughput by 27.31% and improves the covert transmission performance, which is important for enhancing the security of information transmission in HSR wireless communication systems.
-
表 1 算法运行时间比较
Table 1. Comparison of algorithm running time
s 算法 迭代次数 第 1 次 第 2 次 第 3 次 第 4 次 第 5 次 CG 9.3288 9.0754 8.9765 9.7164 8.8943 SDR 466.4370 453.7720 448.8260 485.8240 444.7110 表 2 仿真参数
Table 2. Simulation parameters
参数 数值 载波频率/GHz 5 系统带宽/MHz 100 噪声功率$ \sigma _{\text{w}}^2 $/dBm −110 AN 最大发射功率$P_{\mathrm{B}}^{{\mathrm{max}}}$/dBm 40 BS 天线数目NBS 4 BS到MR链路路径损耗因子 3.5 BS到IRS链路路径损耗因子 2.2 IRS到MR链路路径损耗因子 2.5 莱斯因子 10 时隙/ms 0.6 -
[1] AI B, MOLISCH A F, RUPP M, et al. 5G key technologies for smart railways[J]. Proceedings of the IEEE, 2020, 108(6): 856-893. doi: 10.1109/JPROC.2020.2988595 [2] 李赛飞, 闫连山, 李洪赭, 等. 铁路通信网络安全的分析测试与可信防御研究[J]. 西南交通大学学报, 2018, 53(6): 1130-1136, 1149.LI Saifei, YAN Lianshan, LI Hongzhe, et al. Analysis and testing of network security for China railway communication networks and proposed architecture based on trusted computing[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1130-1136, 1149. [3] 鞠宏浩, 程楷钧, 邓彩连, 等. 无人机空地网络研究综述[J]. 西南交通大学学报, 2024, 59(4): 877-889.JU Honghao, CHENG Kaijun, DENG Cailian, et al. A survey on air-ground networks of unmanned aerial vehicles[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 877-889. [4] CHEN X Y, AN J P, XIONG Z H, et al. Covert communications: a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2023, 25(2): 1173-1198. [5] ARZYKULOV S, CELIK A, NAURYZBAYEV G, et al. Artificial noise and RIS-aided physical layer security: optimal RIS partitioning and power control[J]. IEEE Wireless Communications Letters, 2023, 12(6): 992-996. doi: 10.1109/LWC.2023.3256001 [6] 周小波, 于辉, 彭旭, 等. 智能反射面辅助及人工噪声增强的无线隐蔽通信[J]. 电子与信息学报, 2022, 44(7): 2392-2399.ZHOU Xiaobo, YU Hui, PENG Xu, et al. Wireless covert communications based on intelligent reflecting surface aided and artificial noise enhanced[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2392-2399. [7] 崔亚平, 应兆朋, 何鹏, 等. 空中智能反射面增强的URLLC多无人机网络[J]. 西南交通大学学报, 2024, 59(4): 907-916.CUI Yaping, YING Zhaopeng, HE Peng, et al. Ultra-reliable low-latency communication multi-unmanned aerial vehicle network assisted by intelligent reflecting surface in air[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 907-916. [8] YANG Z Y, YUE P Y, WANG S, et al. Energy-efficient optimization for RIS-aided MIMO covert communications[J]. IEEE Internet of Things Journal, 2023, 10(21): 18993-19003. doi: 10.1109/JIOT.2023.3265126 [9] ZHOU X B, YAN S H, WU Q Q, et al. Intelligent reflecting surface (IRS)-aided covert wireless communications with delay constraint[J]. IEEE Transactions on Wireless Communications, 2021, 21(1): 532-547. [10] YU X H, XU D F, SUN Y, et al. Robust and secure wireless communications via intelligent reflecting surfaces[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2637-2652. doi: 10.1109/JSAC.2020.3007043 [11] 席兵, 冯彦博, 邓炳光, 等. 智能反射面辅助的抗干扰安全通信系统鲁棒资源分配算法[J]. 电子与信息学报, 2024, 46(3): 875-885.XI Bing, FENG Yanbo, DENG Bingguang, et al. A robust resource allocation algorithm for intelligent reflecting surface-assisted anti-jamming secure communication systems[J]. Journal of Electronics & Information Technology, 2024, 46(3): 875-885. [12] LIU C Z, HE R S, NIU Y, et al. Refracting reconfigurable intelligent surface assisted URLLC for millimeter wave high-speed train communication coverage enhancement[J]. IEEE Transactions on Vehicular Technology, 2025, 74(1): 953-967. doi: 10.1109/TVT.2024.3457032 [13] LIU C Z, HE R S, NIU Y, et al. Reconfigurable intelligent surface assisted high-speed train communications: coverage performance analysis and placement optimization[J]. IEEE Transactions on Vehicular Technology, 2023, 73(3): 3750-3766. [14] LIU C Z, HE R S, NIU Y, et al. Coverage probability analysis of RIS-assisted high-speed train communications[C]//2023 IEEE Wireless Communications and Networking Conference (WCNC). Glasgow: IEEE, 2023: 1-6. [15] MA Z, WU Y L, XIAO M, et al. Interference suppression for railway wireless communication systems: a reconfigurable intelligent surface approach[J]. IEEE Transactions on Vehicular Technology, 2021, 70(11): 11593-11603. doi: 10.1109/TVT.2021.3111646 [16] CHEN Y B, WANG Y, ZHANG J Y, et al. QoS-driven spectrum sharing for reconfigurable intelligent surfaces (RISs) aided vehicular networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 5969-5985. doi: 10.1109/TWC.2021.3071332 [17] CAI Y L, ZHAO M M, XU K D, et al. Intelligent reflecting surface aided full-duplex communication: passive beamforming and deployment design[J]. IEEE Transactions on Wireless Communications, 2022, 21(1): 383-397. doi: 10.1109/TWC.2021.3095939 [18] TANG Z X, WANG Y, CHEN Y B, et al. Learn to beamform in reconfigurable intelligent surface aided MISO communications with channel aging[C]//2022 IEEE Wireless Communications and Networking Conference (WCNC). Austin: IEEE, 2022: 1200-1205. [19] XU J P, AI B. When mmWave high-speed railway networks meet reconfigurable intelligent surface: a deep reinforcement learning method[J]. IEEE Wireless Communications Letters, 2022, 11(3): 533-537. doi: 10.1109/LWC.2021.3135602 [20] 李翠然, 张泽鹏, 谢健骊. 基于LSTM动态波束赋形的高速列车越区切换算法[J]. 铁道学报, 2023, 45(10): 78-86.LI Cuiran, ZHANG Zepeng, XIE Jianli. Handover algorithm based on LSTM dynamic beamforming for high-speed train[J]. Journal of the China Railway Society, 2023, 45(10): 78-86. [21] GUO W, ZHANG W L, MU P C, et al. High-mobility wideband massive MIMO communications: Doppler compensation, analysis and scaling laws[J]. IEEE Transactions on Wireless Communications, 2019, 18(6): 3177-3191. doi: 10.1109/TWC.2019.2911508 [22] SHEN K M, YU W. Fractional programming for communication systems: part I: power control and beamforming[J]. IEEE Transactions on Signal Processing, 2018, 66(10): 2616-2630. doi: 10.1109/TSP.2018.2812733 [23] NEUMAIER A, KIMIAEI M, AZMI B. Globally linearly convergent nonlinear conjugate gradients without Wolfe line search[J]. Numerical Algorithms, 2024, 97(4): 1607-1633. doi: 10.1007/s11075-024-01764-5 [24] LI S C, ZHANG N, CHEN H B, et al. Joint road side units selection and resource allocation in vehicular edge computing[J]. IEEE Transactions on Vehicular Technology, 2021, 70(12): 13190-13204. doi: 10.1109/TVT.2021.3119327 [25] YUAN Y, HE R S, AI B, et al. A 3D geometry-based reconfigurable intelligent surfaces-assisted mmWave channel model for high-speed train communications[J]. IEEE Transactions on Vehicular Technology, 2024, 73(2): 1524-1539. doi: 10.1109/TVT.2023.3321645 [26] CHEN J C. Manifold optimization approach for data detection in massive multiuser MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 3652-3657. doi: 10.1109/TVT.2017.2779157 [27] GAO Y B, WANG Y Z, LI C R, et al. Research on joint beamforming of high-speed railway millimeter-wave MIMO communication with reconfigurable intelligent surface[J]. Alexandria Engineering Journal, 2023, 74: 317-326. doi: 10.1016/j.aej.2023.05.021 [28] LI C R, LU Y J, XIE J L, et al. An energy-efficient optimization method for high-speed rail communication systems assisted by intelligent reflecting surfaces (IRS)[J]. Applied Sciences, 2023, 13(16): 9401-9421. doi: 10.3390/app13169401 -
下载: