• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

山地地铁小半径曲线有/无轨缝区钢轨波磨成因

崔晓璐 葛亚存 徐官宝 张洪伟 李想 赵晓波 张富贵

崔晓璐, 葛亚存, 徐官宝, 张洪伟, 李想, 赵晓波, 张富贵. 山地地铁小半径曲线有/无轨缝区钢轨波磨成因[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240376
引用本文: 崔晓璐, 葛亚存, 徐官宝, 张洪伟, 李想, 赵晓波, 张富贵. 山地地铁小半径曲线有/无轨缝区钢轨波磨成因[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240376
CUI Xiaolu, GE Yacun, XU Guanbao, ZHANG Hongwei, LI Xiang, ZHAO Xiaobo, ZHANG Fugui. Comparison of Causes of Rail Corrugation in Sections with and without Rail Gaps in Small Radius Curves of Mountainous Metro[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240376
Citation: CUI Xiaolu, GE Yacun, XU Guanbao, ZHANG Hongwei, LI Xiang, ZHAO Xiaobo, ZHANG Fugui. Comparison of Causes of Rail Corrugation in Sections with and without Rail Gaps in Small Radius Curves of Mountainous Metro[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240376

山地地铁小半径曲线有/无轨缝区钢轨波磨成因

doi: 10.3969/j.issn.0258-2724.20240376
基金项目: 国家自然科学基金面上项目(52275176);重庆市教委科学技术研究项目重点项目(KJZD-K202100703);重庆市基础研究与前沿探索项目(CSTB2022NSCQ-MSX1542);重庆市研究生科研创新项目(CYS25538)
详细信息
    作者简介:

    崔晓璐(1990—),女,教授,博士,研究方向为轮轨摩擦学,E-mail:cui_xiaolu@foxmail.com

  • 中图分类号: U211

Comparison of Causes of Rail Corrugation in Sections with and without Rail Gaps in Small Radius Curves of Mountainous Metro

  • 摘要:

    针对重庆地铁小半径曲线有/无轨缝区域存在的2种不同钢轨波磨现象(无轨缝区域的波磨为发生在内轨上的短波波磨,有轨缝区域的波磨为发生在内轨上的长短波波磨),本文基于摩擦耦合振动理论开展2种钢轨波磨现象成因的对比研究. 结合现场调研,针对小半径曲线有/无轨缝区域,建立轮轨系统有限元模型,采用复特征值分析法对比分析2种区域轮轨系统的稳定性;采用瞬时动态分析法探究轨缝不平顺和钢轨波磨不平顺影响下轮轨系统的动态响应. 结果表明:轮轨系统在小半径曲线有/无轨缝区域均存在摩擦自激振动,主要频率分别为 479.26 Hz 与 477.65 Hz,可诱导波长30~40 mm 的短波波磨;轨缝不平顺会增大轮轨系统动态响应,引发的反馈振动主要频率为112.79 Hz,进而诱导波长150~160 mm 的长波波磨;短波波磨不平顺的反馈振动仅起到加剧自身波磨深度的作用,并未诱导新波长波磨产生.

     

  • 图 1  小半径曲线上的轮轨系统有限元模型

    Figure 1.  Finite element model of wheel-rail system on small radius curves

    图 2  轮轨系统的复特征值分析过程

    Figure 2.  Analysis process of complex eigenvalues of wheel-rail system

    图 3  轮轨系统的瞬时动态分析过程

    Figure 3.  Transient dynamic analysis process of wheel-rail system

    图 4  有/无轨缝区域轮轨系统的复特征值实部分布情况及模态

    Figure 4.  Real distribution of complex eigenvalues and modes of sections with/without rail gaps in wheel-rail system

    图 5  有/无轨缝区域轨道表面的测点分布位置

    Figure 5.  Distribution of measurement points on rail surface of sections with/without rail gaps

    图 6  有/无轨缝区域的各测点处垂向加速度

    Figure 6.  Vertical accelerations at each measuring point in sections with/without rail gaps

    图 7  有/无轨缝区域轮轨间垂向接触力

    Figure 7.  Vertical contact forces between wheel and rail in sections with/without rail gaps

    图 8  有/无轨缝区域轮轨间垂向接触力PSD分析

    Figure 8.  PSD analysis of vertical contact forces between wheel and rail in sections with/without rail gaps

    图 9  添加波磨不平顺前后轮轨间垂向接触力

    Figure 9.  Vertical contact forces between wheel and rail before and after installing rail corrugation irregularity

    图 10  轮轨间垂向接触力PSD分析

    Figure 10.  PSD analysis of vertical contact forces between wheel and rail

    表  1  DTVI 2扣件弹簧刚度及阻尼参数

    Table  1.   Spring stiffness and damping coefficient of DTVI 2 fasteners

    方向 钢轨扣件 轨枕支撑
    刚度/
    (MN·m−1
    阻尼/
    (N·s·m−1
    刚度/
    (MN·m−1
    阻尼/
    (N·s·m−1
    横向 8.79 1927.26
    垂向 40.73 9898.70 170 31000
    纵向 8.79 1927.96
    下载: 导出CSV
  • [1] 宋启峰, 陈光雄, 董丙杰, 等. 地铁梯形轨枕轨道钢轨波磨成因研究[J]. 西南交通大学学报, 2025, 60(3): 714-721.

    SONG Qifeng, CHEN Guangxiong, DONG Bingjie, et al. Cause of rail corrugation on ladder sleeper track[J]. Journal of Southwest Jiaotong University, 2025, 60(3): 714-721.
    [2] 高天赐, 江乐鹏, 从建力, 等. 基于车载振噪多源数据融合的地铁波磨快速检测方法研究[J/OL]. 西南交通大学学报, 2024: 1-9. (2024-07-17). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=XNJT2024070200C&dbname=CJFD&dbcode=CJFQ.
    [3] 崔晓璐, 万久渝, 彭双千, 等. 双非减振扣件区段钢轨波磨诱导弹条断裂机理和控制方法[J/OL]. 西南交通大学学报, 2024: 1-9. (2024-09-14). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=XNJT20240913009&dbname=CJFD&dbcode=CJFQ.
    [4] 金学松, 李霞, 李伟, 等. 铁路钢轨波浪形磨损研究进展[J]. 西南交通大学学报, 2016, 51(2): 264-273.

    JIN Xuesong, LI Xia, LI Wei, et al. Review of rail corrugation progress[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 264-273.
    [5] EL BESHBICHI O, WAN C, BRUNI S, et al. Complex eigenvalue analysis and parameters analysis to investigate the formation of railhead corrugation in sharp curves[J]. Wear, 2020, 450: 203150.
    [6] MATSUMOTO A, SATO Y, ONO H, et al. Formation mechanism and countermeasures of rail corrugation on curved track[J]. Wear, 2002, 253(1/2): 178-184.
    [7] XU J, CUI X L, DING H H, et al. Optimization of vibration absorbers for the suppression of rail corrugation in the sharp curved section with Cologne-egg fasteners[J]. Vehicle System Dynamics, 2024, 62(2): 395-410. doi: 10.1080/00423114.2023.2170255
    [8] KURZECK B. Combined friction induced oscillations of wheelset and track during the curving of metros and their influence on corrugation[J]. Wear, 2011, 271(1/2): 299-310.
    [9] ROBLES R, CORREA N, VADILLO E G, et al. Comprehensive efficient vertical and lateral track dynamic model to study the evolution of rail corrugation in sharp curves[J]. Journal of Sound and Vibration, 2023, 545: 117448. doi: 10.1016/j.jsv.2022.117448
    [10] WANG Z, LEI Z, ZHU J. Study on the formation mechanism of rail corrugation in small radius curves of metro[J]. Journal of Mechanical Science and Technology, 2023, 37(9): 4521-4532. doi: 10.1007/s12206-023-0809-7
    [11] LEI Z Y, ZHOU Y L, LI L. Influence of different track structures on the development of corrugation in small radius curve section of subway[J]. Journal of Vibroengineering, 2023, 25(3): 534-547. doi: 10.21595/jve.2022.22929
    [12] TORSTENSSON P T, PIERINGER A, NIELSEN J C O. Simulation of rail roughness growth on small radius curves using a non-Hertzian and non-steady wheel–rail contact model[J]. Wear, 2014, 314(1/2): 241-253.
    [13] CHEN G X. Friction-induced vibration of a railway wheelset-track system and its effect on rail corrugation[J]. Lubricants, 2020, 8(2): 18. doi: 10.3390/lubricants8020018
    [14] YIN X X, WEI X K, ZHENG H C. Applying system dynamics of discrete supported track to analyze the rail corrugation causation on curved urban railway tracks[J]. Discrete Dynamics in Nature and Society, 2021, 2021(1): 9958163.
    [15] KANG X, CHEN G X, CHEN X, et al. Analysis of the generation mechanism and evolution of the wheel high-order polygonal wear of subway trains[J]. Engineering Failure Analysis, 2023, 151: 107375. doi: 10.1016/j.engfailanal.2023.107375
    [16] 仇超, 杨耕, 谢铠泽. 专用铁路简支梁桥上铺设50 m长钢轨预留轨缝研究[J]. 石家庄铁道大学学报(自然科学版), 2020, 33(3): 97-102.

    QIU Chao, YANG Geng, XIE Kaize. Research of reserved joint gap of 50 m rail on simply supported beam bridges for access railroad[J]. Journal of Shijiazhuang Tiedao University (Natural Science Edition), 2020, 33(3): 97-102.
    [17] CUI X L, CHEN G X, YANG H G, et al. Study on rail corrugation of a metro tangential track with Cologne-egg type fasteners[J]. Vehicle System Dynamics, 2016, 54(3): 353-369. doi: 10.1080/00423114.2015.1137955
    [18] KURZECK B. Combined friction induced oscillations of wheelset and track during the curving of metros and their influence on corrugation[J]. Wear, 2011, 271(1/2): 299-310.
    [19] 陈光雄, 钱韦吉, 莫继良, 等. 轮轨摩擦自激振动引起小半径曲线钢轨波磨的瞬态动力学[J]. 机械工程学报, 2014, 50(9): 71-76. doi: 10.3901/JME.2014.09.071

    CHEN Guangxiong, QIAN Weiji, MO Jiliang, et al. A transient dynamics study on wear-type rail corrugation on a tight curve due to the friction-induced self-excited vibration of a wheelset-track system[J]. Journal of Mechanical Engineering, 2014, 50(9): 71-76. doi: 10.3901/JME.2014.09.071
    [20] NOBARI A, OUYANG H J, BANNISTER P. Statistics of complex eigenvalues in friction-induced vibration[J]. Journal of Sound and Vibration, 2015, 338: 169-183. doi: 10.1016/j.jsv.2014.10.017
    [21] HORY C, BOUILLAUT L, AKNIN P. Time–frequency characterization of rail corrugation under a combined auto-regressive and matched filter scheme[J]. Mechanical Systems and Signal Processing, 2012, 29: 174-186. doi: 10.1016/j.ymssp.2011.12.015
    [22] CHEN G X, ZHOU Z R, OUYANG H, et al. A finite element study on rail corrugation based on saturated creep force-induced self-excited vibration of a wheelset–track system[J]. Journal of Sound and Vibration, 2010, 329(22): 4643-4655. doi: 10.1016/j.jsv.2010.05.011
    [23] QIAN W J, CHEN G X, OUYANG H, et al. A transient dynamic study of the self-excited vibration of a railway wheel set–track system induced by saturated creep forces[J]. Vehicle System Dynamics, 2014, 52(9): 1115-1138. doi: 10.1080/00423114.2014.924629
    [24] 钱韦吉, 黄志强. 摩擦因数对摩擦自激振动影响规律的数值分析[J]. 振动与冲击, 2018, 37(18): 224-230.

    QIAN Weiji, HUANG Zhiqiang. Numerical analysis on the effects of friction coefficient on the friction-induced self-excited vibration[J]. Journal of Vibration and Shock, 2018, 37(18): 224-230.
    [25] 李英. 小半径曲线内轨波磨外轨无波磨原因的研究[J]. 表面技术, 2017, 46(8): 134-139.

    LI Ying. Causes of low rail corrugation and little high rail corrugation in minor radius curve route[J]. Surface Technology, 2017, 46(8): 134-139.
    [26] CUI X L, HUANG B, DU Z X, et al. Study on the mechanism of the abnormal phenomenon of rail corrugation in the curve interval of a mountain city metro[J]. Tribology Transactions, 2020, 63(6): 996-1007. doi: 10.1080/10402004.2020.1782551
    [27] GARDIE E, DUBALE H, TEFERA E, et al. Numerical analysis of rail joint in a vertical applied load and determining the possible location of joints[J]. Forces in Mechanics, 2022, 6: 100064. doi: 10.1016/j.finmec.2021.100064
    [28] MANDAL N K, DHANASEKAR M, SUN Y Q. Impact forces at dipped rail joints[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230(1): 271-282. doi: 10.1177/0954409714537816
    [29] 徐井芒, 王凯, 高原, 等. 高速铁路无缝钢轨断缝瞬态冲击行为分析[J]. 西南交通大学学报, 2020, 55(6): 1348-1354.

    XU Jingmang, WANG Kai, GAO Yuan, et al. Transient impact behavior analysis of rail broken gap on high-speed continuous welded rail[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1348-1354.
    [30] CUI X L, CHEN G X, ZHAO J W, et al. Field investigation and numerical study of the rail corrugation caused by frictional self-excited vibration[J]. Wear, 2017, 376: 1919-1929.
    [31] REN L, XIE G, IWNICKI S D. Properties of wheel/rail longitudinal creep force due to sinusoidal short pitch corrugation on railway rails[J]. Wear, 2012, 284: 73-81.
    [32] BROCKLEY C A, KO P L. An investigation of rail corrugation using friction-induced vibration theory[J]. Wear, 1988, 128(1): 99-106. doi: 10.1016/0043-1648(88)90256-6
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  35
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-30
  • 修回日期:  2025-02-14
  • 网络出版日期:  2025-11-06

目录

    /

    返回文章
    返回