• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

网格絮凝池射流涡结构的演化特征

毛玉红 何锦彬 邢照敏 陶淑丽

毛玉红, 何锦彬, 邢照敏, 陶淑丽. 网格絮凝池射流涡结构的演化特征[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240361
引用本文: 毛玉红, 何锦彬, 邢照敏, 陶淑丽. 网格絮凝池射流涡结构的演化特征[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240361
MAO Yuhong, HE Jinbin, XING Zhaomin, TAO Shuli. Evolutionary Characteristics of Jet Vortex Structure in Grid Flocculation Tank[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240361
Citation: MAO Yuhong, HE Jinbin, XING Zhaomin, TAO Shuli. Evolutionary Characteristics of Jet Vortex Structure in Grid Flocculation Tank[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240361

网格絮凝池射流涡结构的演化特征

doi: 10.3969/j.issn.0258-2724.20240361
基金项目: 国家自然科学基金项目(51968038,51468029);甘肃省重点研发计划资助项目(23YFGA0048);甘肃省教育厅高校科研创新平台重大培育项目(2024CXPT-14)
详细信息
    作者简介:

    毛玉红(1972—),女,教授,博士,研究方向为水处理理论与技术,E-mail:maoyuhong@126.com

  • 中图分类号: TV131

Evolutionary Characteristics of Jet Vortex Structure in Grid Flocculation Tank

  • 摘要:

    为探究网格絮凝池涡流中场射流涡结构的演化特征,采用大涡模拟(LES)对网格絮凝池涡流场进行瞬态模拟,从二维和三维的角度对网格涡流场进行研究. 结果表明:水流经过网格板后,立即在网孔后形成射流涡流场;在射流与背景流体间的剪切、卷吸和掺混作用下,格挡后方区域形成回流涡旋区,边壁处生成不断发展的涡环结构;这些涡环结构导致射流前端发生不同程度的变形与偏移,并抑其向前推进;涡旋主要分布在射流的边界层,其中射流前沿的涡结构聚集变化最快,其面积和强度最大,而靠近边壁处的涡结构强度变化最为显著,每一股射流的涡结构均关于射流轴心线呈镜像对称;此外,三维涡结构的前端形似一冠状结构,随射流向前发展,冠状结构会不断延伸、膨胀、变大,并最终离散和脱落;各时刻的涡结构分布与变化均表现出关于流场平分线的镜像对称性,且流场形态变化过程呈现出从边壁向流场中心发展的趋势.

     

  • 图 1  计算模型示意

    Figure 1.  Schematic diagram of computational model

    图 2  特征截面及特征线位置示意

    Figure 2.  Schematic diagrams of characteristic cross-sections and characteristic lines

    图 3  PIV与LES测量射流中心截面速度矢量图对比

    Figure 3.  Comparison of PIV and LES measurements of velocity vector graphics on center cross-section of jet

    图 4  特征截面上不同时刻的速度矢量图

    Figure 4.  Velocity vector graphics at different moments on characteristic cross-sections

    图 5  不同时刻下射流轴心线的速度变化情况

    Figure 5.  Velocity changes of jet axis at different moments

    图 6  特征截面上不同时刻的涡旋分布云图

    Figure 6.  Cloud atlases of vortex distributions at different moments on characteristic cross-sections

    图 7  特征截面上不同时刻射流涡流场

    Figure 7.  Jet vortex flow fields at different moments on characteristic cross-sections

    图 8  俯视图上三维涡旋结构的演化

    Figure 8.  Evolution of 3D vortex structures from top view

    图 9  涡旋结构演化过程

    Figure 9.  Evolution process of vortex structure

    图 10  边壁到流场中心三维射流涡结构的变化情况

    Figure 10.  Variation of 3D jet vortex structure from side wall to center of flow filed

    表  1  网格板尺寸参数

    Table  1.   Size parameters of mm

    编号 网格板长 × 宽 网孔边长 格挡宽度 网格板厚度
    1 200×160 8 4 5
    2 200×160 8 6 5
    3 200×160 8 8 5
    4 200×160 8 10 5
    5 200×160 8 12 5
    下载: 导出CSV
  • [1] 常青. 絮凝动力学的现状与研究方法进展[J]. 环境科学学报, 2015, 35(10): 3042-3049.

    CHANG Qing. Current state of flocculation dynamics and methodology progress[J]. Acta Scientiae Circumstantiae, 2015, 35(10): 3042-3049.
    [2] 毛玉红, 陈超, 王敏. Taylor-Couette波状涡的周期性特征研究[J]. 华中科技大学学报(自然科学版), 2024, 52(4): 113-120.

    MAO Yuhong, CHEN Chao, WANG Min. Study on periodic characteristics of wavy vortex flow in Taylor-Couette[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2024, 52(4): 113-120.
    [3] 毛玉红, 陈超, 李亚蓉, 等. Taylor-Couette波状涡流场环隙波动的变化特征[J]. 西南交通大学学报, 2025, 60(2): 425-433.

    MAO Yuhong, CHEN Chao, LI Yarong, et al. Fluctuation characteristics of wavy vortex field within annular gap in Taylor-couette[J]. Journal of Southwest Jiaotong University, 2025, 60(2): 425-433.
    [4] WU P J, WU A X, RUAN Z E, et al. Revealing the influence of additional structure on the flow field characteristics and flocculation performance in thickener feedwell through PIV experiments[J]. Powder Technology, 2024, 439: 119748. doi: 10.1016/j.powtec.2024.119748
    [5] XIANG P, WAN Y H, WANG X, et al. Numerical simulation and experimental study of electrocoagulation grid flocculation tank[J]. Water Science and Technology, 2018, 78(3/4): 786-794.
    [6] BRAKNI O, KERKOUB Y, AMROUCHE F, et al. CFD investigation of the effect of flow field channel design based on constriction and enlargement configurations on PEMFC performance[J]. Fuel, 2024, 357: 129920. doi: 10.1016/j.fuel.2023.129920
    [7] HUANG L, YUAN J L, PAN M, et al. CFD simulation and parameter optimization of the internal flow field of a disturbed air cyclone centrifugal classifier[J]. Separation and Purification Technology, 2023, 307: 122760. doi: 10.1016/j.seppur.2022.122760
    [8] 伏雨, 龙云, 肖波, 等. 栅条絮凝池内部流场及颗粒运动状态模拟分析[J]. 环境工程, 2021, 39(4): 25-29, 85.

    FU Yu, LONG Yun, XIAO Bo, et al. Numerical simulation and analysis of flow field and particle motion in grid flocculation tank[J]. Environmental Engineering, 2021, 39(4): 25-29,85.
    [9] 刘存, 王庆涛, 陈翔宇, 等. 网格絮凝池结构参数对流场影响的数值模拟[J]. 水资源与水工程学报, 2018, 29(4): 162-167.

    LIU Cun, WANG Qingtao, CHEN Xiangyu, et al. Numerical simulation of the effect of the structure parameters on the flow field in grid flocculation tank[J]. Journal of Water Resources and Water Engineering, 2018, 29(4): 162-167.
    [10] FUREBY C. Towards the use of large eddy simulation in engineering[J]. Progress in Aerospace Sciences, 2008, 44(6): 381-396. doi: 10.1016/j.paerosci.2008.07.003
    [11] 康啊真, 殷瑞涛, 祝兵, 等. 基于LES的跨海桥梁施工期围堰波流力数值模拟[J]. 西南交通大学学报, 2020, 55(3): 537-544, 589.

    KANG Azhen, YIN Ruitao, ZHU Bing, et al. Numerical simulation of wave-current forces acting on cofferdam for sea-crossing bridge based on large eddy simulation[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 537-544,589.
    [12] 蒋媛, 刘锦阳, 回忆, 等. 水平肋板对高层建筑气动特性的影响研究[J]. 西南交通大学学报, 2025, 60(5): 1-9.

    JIANG Yuan, LIU Jinyang, HUI Yi, et al. Study on the impact of horizontal ribs on the aerodynamic characteristics of high-rise building[J]. Journal of Southwest Jiaotong University, 2025, 60(5): 1-9.
    [13] KANG M, JEON Y, YOU D. Neural-network-based mixed subgrid-scale model for turbulent flow[J]. Journal of Fluid Mechanics, 2023, 962: A38. doi: 10.1017/jfm.2023.260
    [14] 俞建阳, 王若玉, 陈浮, 等. 不同亚格子模型的对比分析及其运用[J]. 工程热物理学报, 2016, 37(11): 2311-2318.

    YU Jianyang, WANG Ruoyu, CHEN Fu, et al. A comparison of the different subgrid-scale models and its application[J]. Journal of Engineering Thermophysics, 2016, 37(11): 2311-2318.
    [15] MOSER R D, HAERING S W, YALLA G R. Statistical properties of subgrid-scale turbulence models[J]. Annual Review of Fluid Mechanics, 2021, 53: 255-286. doi: 10.1146/annurev-fluid-060420-023735
    [16] WANG Y P, YUAN Z L, WANG J C. Ensemble data assimilation-based mixed subgrid-scale model for large-eddy simulations[J]. Physics of Fluids, 2023, 35(8): 085107. doi: 10.1063/5.0160482
    [17] KIM M, PARK J, CHOI H. Large eddy simulation of flow over a circular cylinder with a neural-network-based subgrid-scale model[J]. Journal of Fluid Mechanics, 2024, 984: A6. doi: 10.1017/jfm.2024.154
    [18] 刘超群. Liutex-涡定义和第三代涡识别方法[J]. 空气动力学学报, 2020, 38(3): 413-431, 478.

    LIU Chaoqun. Liutex-third generation of vortex definition and identification methods[J]. Acta Aerodynamica Sinica, 2020, 38(3): 413-431,478.
    [19] YU Y F, SHRESTHA P, ALVAREZ O, et al. Investigation of correlation between vorticity, Q, λci, λ2, Δ and liutex[J]. Computers & Fluids, 2021, 225: 104977.
    [20] 王义乾, 桂南. 第三代涡识别方法及其应用综述[J]. 水动力学研究与进展(A辑), 2019, 34(4): 413-429.

    WANG Yiqian, GUI Nan. A review of the third-generation vortex identification method and its applications[J]. Chinese Journal of Hydrodynamics, 2019, 34(4): 413-429.
    [21] LIU C Q, YU Y F. Mathematical foundation of liutex theory[J]. Journal of Hydrodynamics, 2022, 34(6): 981-993. doi: 10.1007/s42241-023-0091-2
    [22] WANG D D, WANG Z H, FAN Y W, et al. Characterization of vortex structures with self-excited oscillations based on Liutex-Omega vortex identification method[J]. Journal of Hydrodynamics, 2023, 35(1): 95-111. doi: 10.1007/s42241-023-0011-5
    [23] 王颖, 张巧玲, 杨振东. 多孔口紊动浮射流[M]. 北京: 科学出版社, 2021.
    [24] 曹建明. 射流的不稳定性理论[M]. 北京: 清华大学出版社, 2022.
    [25] HUANG G Y, LV X, CHEN W G, et al. Generation of nearly homogeneous isotropic turbulence using a novel oscillating grid system[J]. Physics of Fluids, 2024, 36(3): 035129. doi: 10.1063/5.0194089
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  20
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-22
  • 修回日期:  2024-10-28
  • 网络出版日期:  2025-10-13

目录

    /

    返回文章
    返回