• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

多刀破岩条件下滚刀载荷特性及刃形的影响

张蒙祺 郭靖 莫继良

张蒙祺, 郭靖, 莫继良. 多刀破岩条件下滚刀载荷特性及刃形的影响[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240303
引用本文: 张蒙祺, 郭靖, 莫继良. 多刀破岩条件下滚刀载荷特性及刃形的影响[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240303
ZHANG Mengqi, GUO Jing, MO Jiliang. Cutter Load Characteristics and Effect of Cutter Profile in Multi-Cutter Rock-Breaking Condition[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240303
Citation: ZHANG Mengqi, GUO Jing, MO Jiliang. Cutter Load Characteristics and Effect of Cutter Profile in Multi-Cutter Rock-Breaking Condition[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240303

多刀破岩条件下滚刀载荷特性及刃形的影响

doi: 10.3969/j.issn.0258-2724.20240303
基金项目: 国家自然科学基金资助项目(No.52475218);四川省自然科学基金(2023NSFSC0859)
详细信息
    作者简介:

    张蒙祺(1989—),男,博士,副研究员,主要研究方向为摩擦学、接触力学、机械破岩理论和应用,E-mail:mzhang@swjtu.edu.cn

    通讯作者:

    莫继良(1982—),男,博士,研究员,主要研究方向为摩擦学与动力学行为分析、故障诊断与智能化等,E-mail: jlmo@swjtu.cn

Cutter Load Characteristics and Effect of Cutter Profile in Multi-Cutter Rock-Breaking Condition

  • 摘要:

    为保障全断面隧道掘进机(TBM,Tunnel Boring Machines)在复杂地形下安全、高效运行,需明确多滚刀协同破岩时滚刀的载荷特性,并分析各种刃形滚刀在不同地层中的性能表现. 为此,建立多滚刀协同破岩的颗粒流离散元数值模型,分析平顶、圆顶2种刃形滚刀在不同岩石强度、刀盘转速下的载荷特性,并通过多刀破岩试验对数值分析主要结果加以验证. 结果表明:在给定贯入度条件下,圆顶滚刀所需法向总推力较平顶滚刀低23%~50%,其破岩体积与比能亦低10%~20%;不同安装半径滚刀所受载荷有所差异,最内、最外侧滚刀仅与相邻单侧滚刀形成协同破岩作用,其切削力较邻刀高约30%,故滚刀切削力的均值与标准差随安装半径增大呈两端高、中间低的“W”形分布;2种刃形滚刀法向力的均值与标准差均呈正相关,但在相同法向推力水平下,平顶滚刀的法向力标准差较圆顶滚刀低37%~50%,表明圆顶滚刀可能引起更为剧烈的振动;此外,随刀盘转速的提高,2种滚刀的切削力均相应增大,其中平顶滚刀对转速变化更为敏感.

     

  • 图 1  多刀破岩的颗粒流离散元-有限差分混合模型

    Figure 1.  Particle flow-based discrete element and finite difference hybrid model in multi-cutter rock-breaking condition

    图 2  岩石力学性能测试(花岗岩为例)

    Figure 2.  Tests of rock’s mechanical properties (with granite as an example)

    图 3  离散元模型的标定

    Figure 3.  Calibration of discrete element model

    图 4  滚刀的几何尺寸

    Figure 4.  Geometry dimensions of cutters

    图 5  多刀破岩模型的滚刀布局及编号

    Figure 5.  Layout and number of cutters in multi-cutter rock-breaking model

    图 6  滚刀的运动

    Figure 6.  Motion of cutter

    图 7  刀岩接触状态

    Figure 7.  Cutter and rock contact states

    图 8  滚刀法向力合力的变化历程

    Figure 8.  Variation of total normal forces of cutters

    图 9  滚刀载荷及破岩性能

    Figure 9.  Load and rock-breaking performance of cutters

    图 10  各滚刀的法向力均值及标准差

    Figure 10.  Mean and standard deviation of normal forces of each cutter

    图 11  法向力均值与标准差的相关性(数据点来源于图10

    Figure 11.  Correlation between mean and standard deviation of normal forces (Data points are from Fig.10

    图 12  各滚刀的侧向力均值

    Figure 12.  Mean of side forces of each cutter

    图 13  不同刀盘转速下滚刀的总法向力变化历程

    Figure 13.  Variation of total normal forces of cutters with different rotational speeds of cutterheads

    图 14  不同刀盘转速下滚刀的破岩表现

    Figure 14.  Rock-breaking performance of cutters with different rotational speeds of cutterheads

    图 15  不同刀盘转速下滚刀的法向力均值及标准差

    Figure 15.  Mean and standard deviation of normal force of cutters with different rotational speeds of cutterheads

    图 16  法向力均值与标准差的相关性 (数据点来源于图15

    Figure 16.  Correlation between mean and standard deviation of normal forces of each cutter (Data points are from Fig.15

    图 17  岩石-滚刀接触试验台

    Figure 17.  Test bench of rock and cutter contact

    图 18  试验中滚刀布局

    Figure 18.  Layout of cutters in test

    图 19  试验测量滚刀切削力

    Figure 19.  Cutting forces of cutters measured in tests

    图 20  试验数据

    Figure 20.  Test data

    表  1  模拟与试验结果的对比

    Table  1.   Comparison between simulation and experiment results

    岩石 项目 单轴抗压强度/MPa 单轴抗拉强度/MPa 杨氏模量/GPa 泊松比
    大理岩 实验 69.8 69.8 129.6 130.0
    仿真 6.95 8.1 7.9 19.2
    花岗岩 实验 42.0 42.2 57.6 57.1
    仿真 0.168 0.165 0.263 0.256
    下载: 导出CSV

    表  2  离散元模型细观参数

    Table  2.   Microscopic parameters of discrete element model

    项目 细观参数 大理岩 花岗岩
    颗粒属性 最小颗粒直径/mm 3.5 3.5
    最大颗粒直径/mm 5.6 5.6
    表观密度/(kg•m−3 2654 2565
    局部阻尼系数 0.7 0.7
    线性组 有效模量/GPa 19.2 34.0
    摩擦系数 0.4 0.5
    刚度比 1.8 5.2
    平行黏结组 黏结激活间隙/mm 0.35 0.35
    半径乘子 1.0 1.0
    有效模量/GPa 19.2 34.0
    刚度比 1.8 5.2
    弯矩贡献系数 1.0 1.0
    抗拉强度均值/MPa 8.2 31.9
    抗拉强度标准差/MPa 0.82 3.19
    内聚力均值/MPa 41.0 159.5
    内聚力标准差/MPa 4.1 16.0
    下载: 导出CSV
  • [1] REN D J, SHEN S L, ARULRAJAH A, et al. Prediction model of TBM disc cutter wear during tunnelling in heterogeneous ground[J]. Rock Mechanics and Rock Engineering, 2018, 51(11): 3599-3611. doi: 10.1007/s00603-018-1549-3
    [2] 刘泉声, 黄兴, 刘建平, 等. 深部复合地层围岩与TBM的相互作用及安全控制[J]. 煤炭学报, 2015, 40(6): 1213-1224. doi: 10.13225/j.cnki.jccs.2014.3041

    LIU Quansheng, HUANG Xing, LIU Jianping, et al. Interaction and safety control between TBM and deep mixed ground[J]. Journal of China Coal Society, 2015, 40(6): 1213-1224. doi: 10.13225/j.cnki.jccs.2014.3041
    [3] LAWN B, WILSHAW R. Indentation fracture: principles and applications[J]. Journal of Materials Science, 1975, 10(6): 1049-1081. doi: 10.1007/BF00823224
    [4] ALEHOSSEIN H, DETOURNAY E, HUANG H. An analytical model for the indentation of rocks by blunt tools[J]. Rock Mechanics and Rock Engineering, 2000, 33(4): 267-284. doi: 10.1007/s006030070003
    [5] ROSTAMI J. Design optimization, performance prediction and economic analysis of tunnel boring machines for the construction of the proposed Yucca Mountain nuclear waste repository[D]. Golden: Colorado School of Mines , 1992.
    [6] ROSTAMI J. Development of a force estimation model for rock fragmentation with disc cutters through theoretical modeling and physical measurement of crushed zone pressure[D]. Golden: Colorado School of Mines , 1997.
    [7] 姚敏, 李旭, 原继东, 等. 基于TBM破岩数据的岩体条件深度学习表征方法[J]. 地球科学, 2023, 48(5): 1908-1922.

    YAO Min, LI Xu, YUAN Jidong, et al. Deep learning characterization method of rock mass conditions based on TBM rock breaking data[J]. Earth Science, 2023, 48(5): 1908-1922.
    [8] 侯少康, 刘耀儒, 张凯. 基于IPSO-BP混合模型的TBM掘进参数预测[J]. 岩石力学与工程学报, 2020, 39(8): 1648-1657. doi: 10.13722/j.cnki.jrme.2019.1084

    HOU Shaokang, LIU Yaoru, ZHANG Kai. Prediction of TBM tunnelling parameters based on IPSO‐BP hybrid model[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8): 1648-1657. doi: 10.13722/j.cnki.jrme.2019.1084
    [9] CHEN Z Y, ZHANG Y P, LI J B, et al. Diagnosing tunnel collapse sections based on TBM tunneling big data and deep learning: a case study on the Yinsong Project, China[J]. Tunnelling and Underground Space Technology, 2021, 108: 103700. doi: 10.1016/j.tust.2020.103700
    [10] LIN L K. Rock-breaking characteristics of TBM gage disc cutters and sensitivity analysis of their influencing factors[J]. Journal of Mechanical Engineering, 2018, 54(1): 18-26. doi: 10.3901/JME.2018.01.018
    [11] DENG L C, ZHANG F B, LI X Z, et al. Experimental and numerical investigations on rock breaking of TBM disc cutter based on a novel platform with rotational cutting[J]. Rock Mechanics and Rock Engineering, 2023, 56(2): 1415-1436. doi: 10.1007/s00603-022-03147-5
    [12] 黄鸿颖, 管会生, 母国旺, 等. 竖井全断面掘进机异型刀盘的滚刀布局[J]. 西南交通大学学报, 2025, 60(3): 704-713, 730.

    HUANG Hongying, GUAN Huisheng, MU Guowang, et al. Cutter layout on special-shaped cutterhead for shaft boring machine[J]. Journal of Southwest Jiaotong University, 2025, 60(3): 704-713,730.
    [13] ZHANG X H, XIA Y M, ZENG G Y, et al. Numerical and experimental investigation of rock breaking method under free surface by TBM disc cutter[J]. Journal of Central South University, 2018, 25(9): 2107-2118. doi: 10.1007/s11771-018-3900-y
    [14] ZHANG X H, HU D B, LI J M, et al. Investigation of rock breaking mechanism with TBM hob under traditional and free-face condition[J]. Engineering Fracture Mechanics, 2021, 242: 107432. doi: 10.1016/j.engfracmech.2020.107432
    [15] 蒋明镜, 傅程, 王华宁, 等. 简单复合岩体中TBM多滚刀破岩机理离散元分析[J]. 土木工程学报, 2019, 52(增1): 120-126.

    JIANG Mingjing, FU Cheng, WANG Huaning, et al. Distinct element analysis of mechanism of rock fragmentation induced by TBM cutting in simply composite rock mass with multiple cutters[J]. China Civil Engineering Jjournal, 2019, 52(S1): 120-126.
    [16] 温森, 周书宇, 盛桂琳. 复合岩层中滚刀旋转切割破岩效率试验研究[J]. 岩土力学, 2019, 40(7): 2628-2636. doi: 10.16285/j.rsm.2018.1321

    WEN Sen, ZHOU Shuyu, SHENG Guilin. Experiments on the efficiency of rock fragmentation by rotary cutting in composite rock strata[J]. Rock and Soil Mechanics, 2019, 40(7): 2628-2636. doi: 10.16285/j.rsm.2018.1321
    [17] LI T, ZHANG Z Y, JIA C T, et al. Investigating the cutting force of disc cutter in multi-cutter rotary cutting of sandstone: Simulations and experiments[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 152: 105069. doi: 10.1016/j.ijrmms.2022.105069
    [18] GOU B, ZHANG M Q. Effects of surface grooves on rock cutting performance and contact behavior of a TBM disc cutter[J]. Engineering Fracture Mechanics, 2022, 267: 108466. doi: 10.1016/j.engfracmech.2022.108466
    [19] 袁聚云, 蒋明镜, 廖优斌, 等. 全断面隧道掘进机滚刀破岩尺寸效应离散元分析[J]. 同济大学学报(自然科学版), 2017, 45(10): 1437-1445.

    YUAN Juyun, JIANG Mingjing, LIAO Youbin, et al. Discrete element method analysis of rock failure mechanism considering scale effects of tunnel boring machine cutter[J]. Journal of Tongji University (Natural Science), 2017, 45(10): 1437-1445.
    [20] 中华人民共和国住房和城乡建设部. 工程岩体试验方法标准: GBT 50266-2013[S]. 北京: 中国计划版社, 2013.
    [21] YOON J. Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(6): 871-889. doi: 10.1016/j.ijrmms.2007.01.004
    [22] WANG Y N, TONON F. Modeling Lac du Bonnet granite using a discrete element model[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(7): 1124-1135. doi: 10.1016/j.ijrmms.2009.05.008
    [23] YANG B D, JIAO Y, LEI S T. A study on the effects of microparameters on macroproperties for specimens created by bonded particles[J]. Engineering Computations, 2006, 23(6): 607-631. doi: 10.1108/02644400610680333
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  39
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-09
  • 修回日期:  2024-11-03
  • 网络出版日期:  2025-12-03

目录

    /

    返回文章
    返回