Experimental Study on Pullout Characteristic of Precast Pile Grouted Enlarged Toe
-
摘要:
为研究带扩大桩靴桩侧同步灌浆预制桩(简称GET桩)的抗拔特性,开展室内砂土模型箱抗拔试验. 首先,通过连接PVC管和扩大件组装成带扩大桩靴的预制桩模型;然后,在桩身布设应变传感器,并在桩顶安装加荷装置和重力传感器;随后,通过在桩顶施加荷载获得不同桩型的抗拔曲线;最后,对比等截面桩、带扩大桩靴桩和带扩大桩靴桩侧灌浆桩的抗拔承载特性,并讨论扩底和灌浆对抗拔承载特性的影响. 试验结果表明:GET桩有效提升桩的抗拔承载力,在小位移下,扩大桩靴的存在使桩的抗拔承载力较等截面桩提高1倍,而桩侧灌浆使得其提升5~6倍;此外,GET桩改变了等截面桩的侧摩阻力发挥特性,扩展桩靴能提高总侧摩阻力的发挥速度和最大值,并在抗拔过程中提供一定的桩端阻力,灌浆能增强桩侧和桩端的阻力,为桩体的上半段总侧摩阻力提供初始总侧摩阻力,并倾向于将更多的荷载分配给扩大桩靴.
Abstract:In order to study the pullout characteristics of grouted enlarged toe precast pile (referred to as GET pile), a pullout experiment was carried out in a laboratory sand model box. Firstly, precast pile model with enlarged pile toe was assembled by connecting polyvinyl chloride (PVC) pipes and enlarged parts. Then, strain sensors were installed in the pile shaft, and the loading device and gravity sensor were arranged on the top of the piles. The pullout curves of different pile types were obtained by applying load on the top of the piles. Finally, the pullout bearing characteristics of the piles with equal cross section, piles with enlarged pile toe, and GET piles were compared, and the effects of enlarged base and grouting on pullout bearing characteristics were discussed. The experiment results show that GET pile can effectively improve the pile’s pullout bearing capacity. At small displacements, the pullout bearing capacity of piles with enlarged pile toe is twice that of piles with equal cross section and 5–6 times that of piles with pile side grouting. In addition, GET pile changes the mobilization characteristics of side friction resistance of the piles with equal cross section. The enlarged pile toe can increase the mobilization speed and maximum value of total side friction resistance and provide a certain amount of resistance at the pile end in the pullout process. Grouting can enhance the resistance on the pile side and the pile end, providing the initial total side friction resistance for the upper half of the pile shaft. There is a tendency to distribute more loads to the enlarged pile toe.
-
Key words:
- precast pile foundation /
- enlarged pile toe /
- pile side grouting /
- pullout /
- laboratory model experiment
-
表 1 材料/仪器属性表
Table 1. Material/instrument properties
材料/仪器 属性 备注 土 石英细砂,中密砂 逐层击实法制备,单次填筑0.2 m 水泥浆 P.O 42.5水泥 水灰比1∶0.6,养护7 d后可使用 位移测量设备 百分表 量程99 mm,最小刻度为0.01 mm 荷载测量设备 荷载测量仪 量程为1 000 kg,最小刻度为0.01 kg 应变测量设备 BX120-8AA应变片 黏结采用速干胶,防水保护采用环氧树脂 表 2 3类桩型的抗拔承载特性
Table 2. Pullout bearing characteristics of three types of piles
桩型 竖向极限
抗拔位移/mm竖向极限
抗拔承载力/N等截面桩 23.12 427.30 扩大桩靴预制桩 9.90 287.10 GET桩 6.71 450.80 表 3 3类桩型的峰值情况
Table 3. Peak values of three types of piles
表 4 灌浆与未灌浆桩的阻力峰值
Table 4. Peak resistance values of piles with or without grouting
N 桩型 总侧摩阻力峰值 总端阻力峰值 灌浆 9.90 287.10 未灌浆 6.71 450.80 -
[1] 史佩栋. 桩基工程手册: 桩和桩基础手册[M]. 北京: 人民交通出版社, 2008. [2] 唐昌意, 徐妍, 崔凯, 等. 预应力控制水平及混合配筋影响下PRC管桩的抗弯承载性能[J]. 西南交通大学学报, 2025, 60(5): 1098-1105.TANG Changyi, XU Yan, CUI Kai, et al. Flexural bearing performance of prestressed concrete pipe piles with hybrid reinforcement under influence of prestressed control level and hybrid reinforcement[J]. Journal of Southwest Jiaotong University, 2025, 60(5): 1098-1105. [3] WU J T, EL NAGGAR M H, WANG K H. Dynamic response of poroelastic soil adjacent to an axially vibrating pile[J]. Journal of Engineering Mechanics, 2024, 150(11): 04024084. doi: 10.1061/JENMDT.EMENG-7930 [4] WU J T, EL NAGGAR M H, WANG K H. Analytical model for laterally loaded soil-extended pile shaft applied to verifying the applicability of lateral PS method[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(10): 04021103. doi: 10.1061/(ASCE)GT.1943-5606.0002636 [5] 刘永超. 预应力混凝土管桩结构性能研究及新桩型开发[D]. 天津: 天津大学, 2009. [6] 王奎华, 童魏烽, 吴君涛, 等. 带扩大桩靴桩侧同步灌浆预制桩施工结构及其施工方法: CN108149676A[P]. 2018-06-12. [7] 刘文白, 周健. 扩底桩的上拔试验及其颗粒流数值模拟[J]. 岩土力学, 2004, 25(增2): 201-206. doi: 10.3969/j.issn.1000-7598.2004.z2.041LIU Wenbai, ZHOU Jian. Prototype tests and particle flow numerical simulation of under-reamed piles on uplift loading[J]. Rock and Soil Mechanics, 2004, 25(S2): 201-206. doi: 10.3969/j.issn.1000-7598.2004.z2.041 [8] 常林越, 王卫东, 吴江斌. 基于极限承载力试验的扩底抗拔桩承载特性数值模拟分析[J]. 岩土力学, 2015, 36(增1): 657-663.CHANG Linyue, WANG Weidong, WU Jiangbin. Numerical simulation analysis of uplift behavior of enlarged base piles based on uplift ultimate bearing capacity tests[J]. Rock and Soil Mechanics, 2015, 36(S1): 657-663. [9] 陈仁朋, 张革强, 孔令刚, 等. 饱和及非饱和粉土中扩底桩极限上拔承载力大尺寸模型试验研究[J]. 岩石力学与工程学报, 2010, 29(5): 1068-1074.CHEN Renpeng, ZHANG Geqiang, KONG Linggang, et al. Large-scale tests on uplift ultimate bearing capacities of enlarged base piles in saturated and unsaturated silty soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 1068-1074. [10] YAO W J, CHEN S P. Elastic-plastic analytical solutions of deformation of uplift belled pile[J]. Technical Gazette, 2014, 21(6): 1201-1211. [11] 李永辉, 陈陆杰, 赵鹤飞, 等. 扩大头构件受力机理的大比例尺模型试验研究[J]. 地下空间与工程学报, 2020, 16(1): 149-159. doi: 10.20174/j.juse.2020.01.020LI Yonghui, CHEN Lujie, ZHAO Hefei, et al. Large scale model test research on mechanical characteristics of expanded head component[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(1): 149-159. doi: 10.20174/j.juse.2020.01.020 [12] 郦建俊, 黄茂松, 木林隆, 等. 分层地基中扩底桩抗拔承载力的计算方法研究[J]. 岩土力学, 2008, 29(7): 1997-2003. doi: 10.3969/j.issn.1000-7598.2008.07.049LI Jianjun, HUANG Maosong, MU Linlong, et al. Research on computation methods of uplift capacity of enlarged base pile in layered soils[J]. Rock and Soil Mechanics, 2008, 29(7): 1997-2003. doi: 10.3969/j.issn.1000-7598.2008.07.049 [13] NAZIR R, MOAYEDI H, PRATIKSO A, et al. The uplift load capacity of an enlarged base pier embedded in dry sand[J]. Arabian Journal of Geosciences, 2015, 8(9): 7285-7296. doi: 10.1007/s12517-014-1721-3 [14] 吴江斌, 王向军, 王卫东. 桩侧注浆与扩底抗拔桩的极限载荷试验研究[J]. 地下空间与工程学报, 2018, 14(1): 154-161.WU Jiangbin, WANG Xiangjun, WANG Weidong. Comparison on bearing behavior of uplift piles with side-grouting and enlarged base by full-scale tests[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(1): 154-161. [15] ABDELGWAD A, NASR A, AZZAM W. Utilization of enlarged base to improve the uplift capacity of single pile in sand: model study[J]. Innovative Infrastructure Solutions, 2022, 7(5): 317. doi: 10.1007/s41062-022-00922-9 [16] 吴江斌, 王卫东, 黄绍铭. 扩底抗拔桩扩大头作用机制的数值模拟研究[J]. 岩土力学, 2008, 29(8): 2115-2120.WU Jiangbin, WANG Weidong, HUANG Shaoming. Uplift mechanism of enlarged base of pedestal piles by numerical analysis[J]. Rock and Soil Mechanics, 2008, 29(8): 2115-2120. [17] FLEMING W K. The improvement of pile performance by base grouting[J]. Proceedings of the Institution of Civil Engineers - Civil Engineering, 1993, 97(2): 88-93. [18] 戴国亮, 万志辉. 后压浆桩增强效应作用机制及荷载沉降关系研究[J]. 岩土工程学报, 2017, 39(12): 2235-2244. doi: 10.11779/CJGE201712012DAI Guoliang, WAN Zhihui. Enhanced mechanism and load-settlement relationship of post-grouting piles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2235-2244. doi: 10.11779/CJGE201712012 [19] 张凯, 马建林, 罗朝洋, 等. 岩溶地区高速铁路桥梁桩基后注浆承载特性研究[J]. 铁道建筑, 2018, 58(8): 30-33.ZHANG Kai, MA Jianlin, LUO Chaoyang, et al. Bearing characteristic of post-grouting of high speed railway bridge pier foundation in karst area[J]. Railway Engineering, 2018, 58(8): 30-33. [20] 陈锋, 杨杰, 张冲, 等. 注浆渗透扩散的多物理场耦合数值分析[J]. 西南交通大学学报, 2024, 59(6): 1469-1478.CHEN Feng, YANG Jie, ZHANG Chong, et al. Numerical analysis of multiphysics coupling of grout penetration[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1469-1478. [21] 秦鹏飞, 钟宏伟, 刘坚, 等. 考虑浆土应力耦合作用的劈裂注浆机理分析[J]. 西南交通大学学报, 2023, 58(3): 584-591.QIN Pengfei, ZHONG Hongwei, LIU Jian, et al. Analysis of split grouting mechanism considering coupling effect of slurry and soil stress[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 584-591. [22] 王俊杰, 张帅. 基于超前应力释放与注浆加固的隧道围岩大变形控制分析[J]. 西南交通大学学报, 2025, 60(6): 1362-1372.WANG Junjie, ZHANG Shuai. Large deformation control of tunnel surrounding rock based on advance stress release and grouting reinforcement[J]. Journal of Southwest Jiaotong University, 2025, 60(6): 1362-1372. [23] 吴江斌, 王卫东, 王向军. 软土地区多种桩型抗拔桩侧摩阻力特性研究[J]. 岩土工程学报, 2010, 32(增2): 93-98.WU Jiangbin, WANG Weidong, WANG Xiangjun. Side resistance properties of multiple uplift piles in soft soil area[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S2): 93-98. [24] WANG Z F, SHEN S L, HO C E, et al. Jet grouting practice: an overview[J]. Geotechnical Engineering, 2013, 44(4): 88-96. [25] 宋志慧, 牛志荣. 提高预应力混凝土管桩单桩承载力的新思路[C]//第15届全国结构工程学术会议论文集(第Ⅱ册). 北京: 《工程力学》杂志社, 2006: 324-328. [26] BRUCE D. Enhancing the performance of large diameter piles by grouting[J]. Ground Engineering, 1986, 19(4): 9-15. doi: 10.1016/0148-9062(86)92518-0 [27] 王士恩, 刘超常, 刘祖德. 管桩注浆增强承载力的试验研究[J]. 岩土工程学报, 1998, 20(1): 86-89.WANG Shien, LIU Chaochang, LIU Zude. Experimental study on strengthening bearing capacity of pipe pile by grouting[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(1): 86-89. [28] 李建军, 梁仁旺. 同步注浆静压预制桩沉桩方法: CN101182716A[P]. 2008-05-21. [29] 王文毅. 同步注浆沉桩贯入及承载力的模型试验研究[D]. 太原: 太原理工大学, 2010. [30] 裴二保. 砂土中静压单桩及其桩侧注浆模型试验研究[D]. 太原: 太原理工大学, 2010. [31] 王卫东, 吴江斌, 许亮, 等. 软土地区扩底抗拔桩承载特性试验研究[J]. 岩土工程学报, 2007, 29(9): 1418-1422. doi: 10.3321/j.issn:1000-4548.2007.09.023WANG Weidong, WU Jiangbin, XU Liang, et al. Full-scale field tests on uplift behavior of piles with enlarged base[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1418-1422. doi: 10.3321/j.issn:1000-4548.2007.09.023 [32] 王卫东, 朱合华, 李耀良. 城市岩土工程与新技术[J]. 地下空间与工程学报, 2011, 7(增1): 1274-1291. doi: 10.3969/j.issn.1673-0836.2011.z1.002WANG Weidong, ZHU Hehua, LI Yaoliang. Urban geotechnical engineering and new technology[J]. Chinese Journal of Underground Space and Engineering, 2011, 7(S1): 1274-1291. doi: 10.3969/j.issn.1673-0836.2011.z1.002 [33] 李立业. 劲性复合桩承载特性研究[D]. 南京: 东南大学, 2016. [34] 朱小军, 孔伟阳, 龚维明, 等. 非连接式桩筏基础水平特性试验[J]. 中国公路学报, 2019, 32(2): 97-105, 115. doi: 10.3969/j.issn.1001-7372.2019.02.010ZHU Xiaojun, KONG Weiyang, GONG Weiming, et al. Test on the horizontal characteristics of disconnected piled raft foundation[J]. China Journal of Highway and Transport, 2019, 32(2): 97-105,115. doi: 10.3969/j.issn.1001-7372.2019.02.010 [35] 朱小军, 费康, 李文帅, 等. 沉箱-垫层-桩复合基础竖向特性的细观试验[J]. 中国公路学报, 2017, 30(10): 93-99. doi: 10.3969/j.issn.1001-7372.2017.10.012ZHU Xiaojun, FEI Kang, LI Wenshuai, et al. Meso-experiment on vertical characteristics of caisson-cushion-pile composite foundation[J]. China Journal of Highway and Transport, 2017, 30(10): 93-99. doi: 10.3969/j.issn.1001-7372.2017.10.012 [36] 王瑞芳, 傅旭东, 潘孝诚, 等. 桩网复合地基的模型试验加固效果对比研究[J]. 土木建筑与环境工程, 2011, 33(5): 75-82.WANG Ruifang, FU Xudong, PAN Xiaocheng, et al. Contrast analysis of the reinforcement effect of pile-net composite foundation[J]. Journal of Civil, Architectural & Environmental Engineering, 2011, 33(5): 75-82. [37] 中华人民共和国建设部. 建筑桩基技术规范: JGJ 94—2008[S]. 北京: 中国建筑工业出版社, 2008. [38] 孔纲强, 杨庆, 郑鹏一, 等. 考虑时间效应的群桩负摩阻力模型试验研究[J]. 岩土工程学报, 2009, 31(12): 1913-1919.KONG Gangqiang, YANG Qing, ZHENG Pengyi, et al. Model tests on negative skin friction for pile groups considering time effect[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12): 1913-1919. [39] 刘金砺, 迟铃泉. 桩土变形计算模型和变刚度调平设计[J]. 岩土工程学报, 2000, 22(2): 151-157. doi: 10.3321/j.issn:1000-4548.2000.02.002LIU Jinli, CHI Lingquan. The modified model of pile-soil deformation calculation and variable rigidity design method for balance settlement[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 151-157. doi: 10.3321/j.issn:1000-4548.2000.02.002 [40] 陈龙, 胡逸凡, 陈永辉, 等. 砂土中能源桩承载力受热冷循环影响的离心机试验[J]. 西南交通大学学报, 2025, 60(1): 83-92. doi: 10.3969/j.issn.0258-2724.20220740CHEN Long, HU Yifan, CHEN Yonghui, et al. Centrifuge test on bearing capacity of energy piles in sand affected by thermal-cool cycles[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 83-92. doi: 10.3969/j.issn.0258-2724.20220740 [41] 郦建俊, 黄茂松, 王卫东, 等. 开挖条件下抗拔桩承载力的离心模型试验[J]. 岩土工程学报, 2010, 32(3): 388-396.LI Jianjun, HUANG Maosong, WANG Weidong, et al. Centrifugal model tests on bearing capacity of uplift piles under deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 388-396. [42] 许亮, 王卫东, 沈健, 等. 扩底抗拔桩承载力计算方法与工程应用[J]. 建筑结构学报, 2007, 28(3): 122-128. doi: 10.3321/j.issn:1000-6869.2007.03.017XU Liang, WANG Weidong, SHEN Jian, et al. Analytical method of bearing capacity and its engineering application of pedestal uplift piles[J]. Journal of Building Structures, 2007, 28(3): 122-128. doi: 10.3321/j.issn:1000-6869.2007.03.017 -
下载: