• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

中明度反射隔热涂料制备及轨道板控温

关文勋 宋贲 程冠之 李旺 谢永江 朱聪聪 肖畅

关文勋, 宋贲, 程冠之, 李旺, 谢永江, 朱聪聪, 肖畅. 中明度反射隔热涂料制备及轨道板控温[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240265
引用本文: 关文勋, 宋贲, 程冠之, 李旺, 谢永江, 朱聪聪, 肖畅. 中明度反射隔热涂料制备及轨道板控温[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240265
GUAN Wenxun, SONG Ben, CHENG Guanzhi, LI Wang, XIE Yongjiang, ZHU Congcong, XIAO Chang. Fabrication of Reflective Insulation Coating with Medium Brightness for Controlling Track Slab Temperature[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240265
Citation: GUAN Wenxun, SONG Ben, CHENG Guanzhi, LI Wang, XIE Yongjiang, ZHU Congcong, XIAO Chang. Fabrication of Reflective Insulation Coating with Medium Brightness for Controlling Track Slab Temperature[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240265

中明度反射隔热涂料制备及轨道板控温

doi: 10.3969/j.issn.0258-2724.20240265
基金项目: 中国铁道科学研究院集团有限公司科研开发基金(2022YJ100);中铁武汉局集团公司科研开发计划(23G04)
详细信息
    作者简介:

    关文勋(1993—),男,副研究员,博士,研究方向为高分子工程材料,E-mail:188382623@qq.com

    通讯作者:

    程冠之(1987—),男,副研究员,博士,研究方向为高分子工程材料,E-mail: chengguanzhi@163.com

  • 中图分类号: U214.6

Fabrication of Reflective Insulation Coating with Medium Brightness for Controlling Track Slab Temperature

  • 摘要:

    为缓解高速铁路纵连结构型无砟轨道结构在高温环境下易出现的形变上拱病害,使用自制氟改性黑色颜料,配制一种兼具中明度值和高反射性能的反射隔热涂料. 该涂料在实现高效控温的同时,可避免常规高明度白色反射涂料对目视人员造成的视觉损伤. 采用红外光谱对自制氟改性黑色颜料的分子结构进行表征,并利用紫外-可见-近红外分光光度计揭示其高太阳光反射性能作用机制,同时与常规冷颜料进行对比分析;在此基础上,配制相应的中明度反射隔热涂料,对成膜后涂层的控温、黏结、耐久等性能进行测试;进一步在自然暴露环境下的实尺轨道板结构进行表面涂装,通过长期温度监测评估其现场控温效果. 试验结果表明:自制氟改性黑色颜料凭借其近红外波段的透明特性,提升了中明度反射隔热涂层的太阳光反射性能;与常规颜料中明度涂层相比,自制涂层的太阳光反射率提升7.2%以上,在模拟太阳辐射下隔热温差可提升3.0 ℃以上,并具有较好的匀质性、黏结力和耐紫外老化性能;在典型晴朗天气条件下,自制涂层可将实尺轨道板结构表面峰值温度降低10.0 ℃以上,表面日温差减小5.0~10.0 ℃,并将轨道板纵向正温度梯度降低约50%.

     

  • 图 1  黑色颜料PCF及反应物的红外光谱

    Figure 1.  Infrared spectra of black pigment PCF and reactant

    图 2  不同PCF掺量反射隔热涂层的Lab值和太阳光反射性能

    Figure 2.  L, a, and b values and solar reflectance performance of reflective insulation coatings with different PCF dosages

    图 3  不同PCF掺量反射隔热涂层和不同颜料种类反射隔热涂层的紫外-可见-近红外反射光谱

    Figure 3.  UV-VIS-NIR reflectance spectra of reflective insulation coatings with different PCF dosages and pigment types

    图 4  不同颜料反射隔热涂层模拟太阳光温升试验的热成像图及温升曲线

    Figure 4.  Thermal image and temperature rise curves of simulated solar temperature rise test for reflective insulation coatings with different pigments

    图 5  PCF涂层的微观形貌、黏结性能及耐紫外老化性能

    Figure 5.  Microscopic morphology, adhesion properties, and resistance to ultraviolet-induced aging of PCF coating

    图 6  典型时刻实尺轨道板的热成像图及温度分布统计

    Figure 6.  Thermal image and temperature distribution statistics of full-scale track slab at typical moments

    图 7  2023年9月12日–20日涂装轨道板与对照轨道板的表面温度、表面最大日温差和纵向温度梯度随时间变化曲线

    Figure 7.  Variation curves of surface temperature, maximum daily temperature difference, and longitudinal temperature gradient of coated and control track slabs from September 12th to 20th, 2023

    图 8  轨道板在不同季节的表面温度随时间变化曲线

    Figure 8.  Surface temperature variation curves of track slab at different seasons

    表  1  反射隔热涂料基础配方

    Table  1.   Basic formula of reflective insulation coating

    序号 种类 牌号 用量/份
    1 氟碳树脂 GK570 60
    2 钛白粉 R930 13
    3 玻璃微珠 H26 13
    4 醋酸丁酯 10
    5 流平剂 B354 1
    6 消泡剂 B066 0.5
    7 分散剂 B110 1.5
    8 触变剂 R974 1
    下载: 导出CSV

    表  2  不同颜料制备涂层及混凝土试样的颜色与太阳光反射性能

    Table  2.   Colors and solar reflectance performance of coatings and concrete specimens fabricated by different pigments

    材料 掺量/% L值 a值 b值 TSR NIR VLR
    PCF 0.36 72.17 0.602 0.864 0.655 0.824 0.463
    ICB 0.95% 71.88 1.228 −3.163 0.583 0.717 0.450
    ICNB 1.96% 72.34 −0.474 −4.556 0.543 0.656 0.437
    CB 0.20% 72.22 −0.294 −2.065 0.347 0.303 0.401
    混凝土 / 65.21 0.520 4.790 0.248 0.224 0.268
    下载: 导出CSV
  • [1] 何元庆. 温度梯度荷载作用下CRTS Ⅱ型无砟轨道层间离缝分析[J]. 铁道建筑, 2017, 57(4): 102-105. doi: 10.3969/j.issn.1003-1995.2017.04.26

    HE Yuanqing. Analysis on interface seam of CRTS Ⅱ slab ballastless track under temperature gradient load[J]. Railway Engineering, 2017, 57(4): 102-105. doi: 10.3969/j.issn.1003-1995.2017.04.26
    [2] 赵国堂, 高亮, 赵磊, 等. CRTSⅡ型板式无砟轨道板下离缝动力影响分析及运营评估[J]. 铁道学报, 2017, 39(1): 1-10. doi: 10.3969/j.issn.1001-8360.2017.01.001

    ZHAO Guotang, GAO Liang, ZHAO Lei, et al. Analysis of dynamic effect of gap under CRTSⅡ track slab and operation evaluation[J]. Journal of the China Railway Society, 2017, 39(1): 1-10. doi: 10.3969/j.issn.1001-8360.2017.01.001
    [3] KRAYENHOFF E S, BROADBENT A M, ZHAO L, et al. Cooling hot cities: a systematic and critical review of the numerical modelling literature[J]. Environmental Research Letters, 2021, 16(5): 053007.1-053007.30. doi: 10.1088/1748-9326/abdcf1
    [4] 李永乐, 黄旭, 朱金, 等. 极端天气下桥塔温致效应及抗裂性能优化[J]. 西南交通大学学报, 2023, 58(5): 975-984, 1036.

    LI Yongle, HUANG Xu, ZHU Jin, et al. Thermal effects and anti-crack performance optimization of bridge pylons under extreme weather conditions[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 975-984,1036.
    [5] 冀磊, 王鑫, 周燚杭, 等. 反射隔热涂料对轨道板温度及应力的影响[J]. 西南交通大学学报, 2021, 56(5): 960-966.

    JI Lei, WANG Xin, ZHOU Yihang, et al. Effect of reflective thermal insulation coatings on temperature and stress of track slab[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 960-966.
    [6] SU R, LV Y, SU Q, et al. Development of composite-phase change microcapsule coating and numerical investigation on its effect in ballastless track slabs[J]. Construction and Building Materials, 2023, 375: 130974. doi: 10.1016/j.conbuildmat.2023.130974
    [7] ZHANG Z T, WANG K T, MO B H, et al. Preparation and characterization of a reflective and heat insulative coating based on geopolymers[J]. Energy and Buildings, 2015, 87: 220-225. doi: 10.1016/j.enbuild.2014.11.028
    [8] SHA A M, LIU Z Z, TANG K, et al. Solar heating reflective coating layer (SHRCL) to cool the asphalt pavement surface[J]. Construction and Building Materials, 2017, 139: 355-364. doi: 10.1016/j.conbuildmat.2017.02.087
    [9] CHEN Y Z, LI Z X, DING S Q, et al. Research on heat reflective coating technology of asphalt pavement[J]. International Journal of Pavement Engineering, 2022, 23(13): 4455-4464. doi: 10.1080/10298436.2021.1952410
    [10] MIAO C C, LI Z H, LI K, et al. A super-cooling solar reflective coating with waterborne polyurethane for asphalt pavement[J]. Progress in Organic Coatings, 2022, 165: 106741.1-106741.9. doi: 10.1016/j.porgcoat.2022.106741
    [11] SYNNEFA A, SANTAMOURIS M, LIVADA I. A study of the thermal performance of reflective coatings for the urban environment[J]. Solar Energy, 2006, 80(8): 968-981. doi: 10.1016/j.solener.2005.08.005
    [12] BECHERINI F, LUCCHI E, GANDINI A, et al. Characterization and thermal performance evaluation of infrared reflective coatings compatible with historic buildings[J]. Building and Environment, 2018, 134: 35-46. doi: 10.1016/j.buildenv.2018.02.034
    [13] MORINI E, CASTELLANI B, NICOLINI A, et al. Effects of aging on retro-reflective materials for building applications[J]. Energy and Buildings, 2018, 179: 121-132. doi: 10.1016/j.enbuild.2018.09.013
    [14] ZHANG W D, SONG Z N, SONG J R, et al. A systematic laboratory study on an anticorrosive cool coating of oil storage tanks for evaporation loss control and energy conservation[J]. Energy, 2013, 58: 617-627. doi: 10.1016/j.energy.2013.06.044
    [15] LEVINSON R, AKBARI H, REILLY J C. Cooler tile-roofed buildings with near-infrared-reflective non-white coatings[J]. Building and Environment, 2007, 42(7): 2591-2605. doi: 10.1016/j.buildenv.2006.06.005
    [16] 程冠之, 刘竞, 郑新国, 等. 功能填料对中明度反射隔热氟碳涂层性能的影响[J]. 铁道建筑, 2018, 58(1): 86-89. doi: 10.3969/j.issn.1003-1995.2018.01.21

    CHENG Guanzhi, LIU Jing, ZHENG Xinguo, et al. Inf luence of functional fillers on performance of ref lective thermal-insulation fluorocarbon coating with medium brightness[J]. Railway Engineering, 2018, 58(1): 86-89. doi: 10.3969/j.issn.1003-1995.2018.01.21
    [17] WANG X X, KENDRICK C, OGDEN R, et al. Dynamic thermal simulation of a retail shed with solar reflective coatings[J]. Applied Thermal Engineering, 2008, 28(8/9): 1066-1073. doi: 10.1016/j.applthermaleng.2007.06.011
    [18] CAI L G, WU X M, GAO Q, et al. Effect of morphology on the near infrared shielding property and thermal performance of K0.3WO3 blue pigments for smart window applications[J]. Dyes and Pigments, 2018, 156: 33-38. doi: 10.1016/j.dyepig.2018.03.074
    [19] ELAKKIYA V, SUMATHI S. Effect of preparation methodology on the colour and the NIR reflectance of nickel doped manganese pyrophosphate[J]. Journal of Alloys and Compounds, 2018, 768: 535-544. doi: 10.1016/j.jallcom.2018.07.236
    [20] 国家质量监督检验检疫总局国家标准化管理委员会. 色漆和清漆拉开法附着力试验: GB/T 5210—2006[S]. 北京: 中国标准出版社, 2007.
    [21] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 机械工业产品用塑料、涂料、橡胶材料人工气候老化试验方法 荧光紫外灯: GB/T 14522—2008[S]. 北京: 中国标准出版社, 2009.
    [22] 徐永祥, 李运德, 师华, 等. 太阳热反射隔热涂料研究进展[J]. 涂料工业, 2010, 40(1): 70-74. doi: 10.3969/j.issn.0253-4312.2010.01.019

    XU Yongxiang, LI Yunde, SHI Hua, et al. Present situation and progress of solar heat reflective thermal insulating coatings[J]. Paint & Coatings Industry, 2010, 40(1): 70-74. doi: 10.3969/j.issn.0253-4312.2010.01.019
    [23] ZHOU A, YU Z C, CHOW C L, et al. Enhanced solar spectral reflectance of thermal coatings through inorganic additives[J]. Energy and Buildings, 2017, 138: 641-647. doi: 10.1016/j.enbuild.2016.12.027
    [24] SARFARAZI V, HAERI H, EBNEABBASI P, et al. Determination of tensile strength of concrete using a novel apparatus[J]. Construction and Building Materials, 2018, 166: 817-832. doi: 10.1016/j.conbuildmat.2018.01.157
    [25] 黄良美, 黄海霞, 项东云, 等. 南京市四种下垫面气温日变化规律及城市热岛效应[J]. 生态环境, 2007, 16(5): 1411-1420. doi: 10.3969/j.issn.1674-5906.2007.05.017

    HUANG Liangmei, HUANG Haixia, XIANG Dongyun, et al. The diurnal change of air temperature in four types of land cover and urban heat island effect in Nanjing, China[J]. Ecology and Environment, 2007, 16(5): 1411-1420. doi: 10.3969/j.issn.1674-5906.2007.05.017
    [26] 王树和, 水中和, 玄东兴. 大温差环境条件下混凝土表面裂缝损伤[J]. 东南大学学报(自然科学版), 2006, 36(增2): 122-125.

    WANG Shuhe, SHUI Zhonghe, XUAN Dongxing. Investigation on surface cracking damage of concrete under big temperature difference[J]. Journal of Southeast University (Natural Science Edition), 2006, 36(S2): 122-125.
    [27] 刘鹏, 余志武, 陈令坤, 等. 自然环境温度作用下一维混凝土内温度响应模型[J]. 铁道学报, 2014, 36(8): 103-109. doi: 10.3969/j.issn.1001-8360.2014.08.017

    LIU Peng, YU Zhiwu, CHEN Lingkun, et al. Interior temperature response model of one-dimension concrete under the action of temperatures in the natural environment[J]. Journal of the China Railway Society, 2014, 36(8): 103-109. doi: 10.3969/j.issn.1001-8360.2014.08.017
    [28] 国家铁路局. 高速铁路设计规范: TB 10621—2014[S]. 北京: 中国铁道出版社, 2015.
    [29] 朱晓嘉. CRTS II型轨道板温度效应及其对列车运行安全性的影响分析[D]. 成都: 西南交通大学, 2012.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  8
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-06
  • 修回日期:  2024-09-19
  • 网络出版日期:  2026-01-20

目录

    /

    返回文章
    返回