• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于惯性放大机制的钢轨结构弹性波调控研究

郭文杰 翟玉柳 罗文俊 张鹏飞 洪显

郭文杰, 翟玉柳, 罗文俊, 张鹏飞, 洪显. 基于惯性放大机制的钢轨结构弹性波调控研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240262
引用本文: 郭文杰, 翟玉柳, 罗文俊, 张鹏飞, 洪显. 基于惯性放大机制的钢轨结构弹性波调控研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240262
GUO Wenjie, ZHAI Yuliu, LUO Wenjun, ZHANG Pengfei, HONG Xian. Elastic Wave Control of Rail Structure Based on Inertial Amplification Mechanism[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240262
Citation: GUO Wenjie, ZHAI Yuliu, LUO Wenjun, ZHANG Pengfei, HONG Xian. Elastic Wave Control of Rail Structure Based on Inertial Amplification Mechanism[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240262

基于惯性放大机制的钢轨结构弹性波调控研究

doi: 10.3969/j.issn.0258-2724.20240262
基金项目: 国家杰出青年科学基金项目(52225210);国家自然科学基金项目(52402425);江西省自然科学基金项目(20242BAB214078,20224BAB204069)
详细信息
    作者简介:

    郭文杰(1991—),男,副教授,博士,研究方向为轨道交通减振降噪,E-mail:739633869@qq.com

    通讯作者:

    罗文俊(1979—),女,教授,博士,研究方向为轨道交通减振降噪,E-mail:lwj06051979@163.com

  • 中图分类号: U211

Elastic Wave Control of Rail Structure Based on Inertial Amplification Mechanism

  • 摘要:

    列车运行引起的振动噪声问题日益突出,传统调谐质量阻尼器(TMD)难以实现针对钢轨的轻质宽频减振,鉴于此,引入惯性放大机制(IAM),利用惯容实现TMD的更大有效工作质量,从而增强对轨道结构振动的抑制;利用能量法与虚拟弹簧法提出一种新的复能带特性求解方法,基于该方法建立配置有IAM-TMD的钢轨结构的复能带分析模型,并利用有限元求解结果验证模型的准确性;在此基础上,以复能带特性作为评价指标,探究IAM对传统钢轨TMD减振效果的影响机制,分析IAM质量比、杠杆角度、阻尼系数对钢轨结构内振动波传播的调控作用. 结果表明:复能带虚部能够详细地描述带隙内部波传播的衰减过程;应用α=0.05,θ=10° 的IAM后,原TMD作用下的Bragg带隙由925~1260 Hz拓宽为881~1320 Hz,复能带虚部增大,衰减能力增强;IAM-TMD的减振效果与质量比、阻尼系数成正比,与杠杆角度成反比. 利用复能带特性对IAM进行了分析研究,其研究成果可为钢轨减振提供一种新的思路.

     

  • 图 1  布设IAM-TMD的钢轨结构

    Figure 1.  Rail structure with IAM-TMD

    图 2  钢轨结构振动传输特性计算模型

    Figure 2.  Computational model of vibration transmission characteristics of rail structures

    图 3  型函数个数收敛性分析

    Figure 3.  Convergence analysis of the number of type functions

    图 4  虚拟弹簧刚度系数取值收敛性分析

    Figure 4.  Convergence analysis of stiffness coefficient of virtual spring

    图 5  复能带结果验证

    Figure 5.  Validation of complex band results

    图 6  质量比对复能带的影响

    Figure 6.  Effect of mass ratio on complex band

    图 7  角度对复能带的影响

    Figure 7.  Effect of angle on complex band

    图 8  阻尼变化对复能带的影响

    Figure 8.  Effect of damping variation on complex band

    图 9  IAM-TMD对钢轨位移传递率的影响

    Figure 9.  Effect of IAM-TMD on rail displacement transmissibility

    表  1  周期性IAM-TMD钢轨结构模型计算参数表

    Table  1.   Table of calculated parameters for the periodic IAM-TMD rail structure model

    部件 参数 取值
    钢轨密度 /(kg•m−37850
    横截面积 /m27.745 × 10−3
    弹性模量 /GPa210
    截面惯性矩 /m43.217 × 10−5
    剪切修正因子0.4
    泊松比0.3
    TMD/IAM-TMD主质量比0.05
    侧质量比0.05
    下载: 导出CSV
  • [1] 李伟, 周志军, 温泽峰. 地铁弹性短轨枕轨道的钢轨波磨萌生原因[J]. 西南交通大学学报, 2021, 56(3): 619-626. doi: 10.35741/issn.0258-2724.56.3.50

    LI Wei, ZHOU Zhijun, WEN Zefeng. Initiation cause of subway rail corrugation on track with rubber-booted short sleepers[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 619-626. doi: 10.35741/issn.0258-2724.56.3.50
    [2] HERMANN F. Device for damping vibrations of bodies: US0989958[P]. 1911-04-18.
    [3] LIU Z, ZHANG X, MAO Y, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736. doi: 10.1126/science.289.5485.1734
    [4] 肖祥, 薛宗颜. 基于TMD的大跨度斜拉桥风致随机振动控制研究[J/OL]. 武汉理工大学学报(交通科学与工程), 1-9. [2024-05-30]. http://kns.cnki.net/kcms/detail/42.1824.U.20230704.1104.018.html.
    [5] 李晓露, 樊永欣, 尹绪超, 等. 精准调频钢轨阻尼器设计及试验研究[J]. 噪声与振动控制, 2023, 43(6): 263-269.

    LI Xiaolu, FAN Yongxin, YIN Xuchao, et al. Design and experimental study on accurate tuned rail dampers[J]. Noise and Vibration Control, 2023, 43(6): 263-269.
    [6] 许孝堂, 蒲黔辉, 尹学军, 等. 宽频式钢轨动力吸振器对波磨的影响分析[J]. 地震工程与工程振动, 2024, 44(2): 147-159.

    XU Xiaotang, PU Qianhui, YIN Xuejun et al. Study on the influence of wide-frequency tuned mass damper on rail corrugation[J]. Earthquake Engineering and Engineering Dynamics, 2024, 44(2): 147-159.
    [7] SMITH M C. Synthesis of mechanical networks: the inerter[J]. IEEE Transactions on Automatic Control, 2002, 47(10): 1648-1662. doi: 10.1109/TAC.2002.803532
    [8] LAZAR I F, NEILD S A, WAGG D J. Vibration suppression of cables using tuned inerter dampers[J]. Engineering Structures, 2016, 122: 62-71. doi: 10.1016/j.engstruct.2016.04.017
    [9] MARIAN L, GIARALIS A. Optimal design of a novel tuned mass-damper–inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems[J]. Probabilistic Engineering Mechanics, 2014, 38: 156-164. doi: 10.1016/j.probengmech.2014.03.007
    [10] 王振洲, 安子凡, 曹黎媛, 等. 多自由度结构-串并联调谐质量阻尼器减震性能[J]. 振动工程学报, 2024, 37(2): 318-325.

    WANG Zhenzhou, AN Zifan, CAO Liyuan, et al. Seismic performance of tuned tandem mass dampers for MDOF structures[J]. Journal of Vibration Engineering, 2024, 37(2): 318-325.
    [11] 刘欣鹏, 杨映雯, 孙毅, 等. 基于惯容系统位置的调谐质量阻尼器的振动控制研究[J]. 振动与冲击, 2023, 42(1): 215-223.

    LIU Xinpeng, YANG Yingwen, SUN Yi, et al. Vibration control of TMD based on position of inertial system[J]. Journal of Vibration and Shock, 2023, 42(1): 215-223.
    [12] CHENG Z B, PALERMO A, SHI Z F, et al. Enhanced tuned mass damper using an inertial amplification mechanism[J]. Journal of Sound Vibration, 2020, 475: 115267. doi: 10.1016/j.jsv.2020.115267
    [13] 张群, 程志宝, 石志飞. 惯性增强动力吸振器-浮置板轨道低频减振性能研究[J/OL]. 铁道学报, 1-9. [2024-05-30]. http://kns.cnki.net/kcms/detail/11.2104.u.20240507.1737.002.html.
    [14] MEAD D J. Free wave propagation in periodically supported, infinite beams[J]. Journal of Sound and Vibration, 1970, 11(2): 181-197. doi: 10.1016/S0022-460X(70)80062-1
    [15] 农兴中, 李祥, 刘堂辉, 等. 浮置板下声子晶体隔振器带隙特性研究[J]. 西南交通大学学报, 2019, 54(6): 1203-1209, 1276.

    NONG Xingzhong, LI Xiang, LIU Tanghui, et al. Band gap characteristics of vibration isolators of phononic crystals under floating slab[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1203-1209, 1276.
    [16] 陈圣兵, 张浩, 宋玉宝. 声子晶体板复能带计算方法[J]. 振动工程学报, 2019, 32(3): 415-420.

    CHEN Shengbing, ZHANG Hao, SONG Yubao. Calculation method of complex band structure of phononic plates[J]. Journal of Vibration Engineering, 2019, 32(3): 415-420.
    [17] XIAO X, HE Z C, LI E, et al. A lightweight adaptive hybrid laminate metamaterial with higher design freedom for wave attenuation[J]. Composite Structures, 2020, 243: 112230. doi: 10.1016/j.compstruct.2020.112230
    [18] 付强, 姚飞, 张红艳. 局域共振夹芯超结构梁带隙特性及实验研究[J]. 人工晶体学报, 2024, 53(1): 65-72.

    FU Qiang, YAO Fei, ZHANG Hongyan. Band gap characteristics and experimental study of local resonance sandwich metastructure beam[J]. Journal of Synthetic Crystals, 2024, 53(1): 65-72.
    [19] 张书燕, 王艳锋. 反平面波在一维液体饱和多孔声子晶体中的传播特性[J]. 振动与冲击, 2022, 41(9): 283-289.

    ZHANG Shuyan, WANG Yanfeng. Propagation characteristics of anti-plane wave in one-dimensional fluid saturated porous phononic crystals[J]. Journal of Vibration and Shock, 2022, 41(9): 283-289.
    [20] LAUDE V, ACHAOUI Y, BENCHABANE S, et al. Evanescent Bloch waves and the complex band structure of phononic crystals[J]. Physical Review B, 2009, 80(9): 092301.
    [21] ZHU X Y, ZHONG S, ZHAO H D. Band gap structures for viscoelastic phononic crystals based on numerical and experimental investigation[J]. Applied Acoustics, 2016, 106: 93-104. doi: 10.1016/j.apacoust.2016.01.007
    [22] GUO W J, YANG Z, FENG Q S, et al. A new method for band gap analysis of periodic structures using virtual spring model and energy functional variational principle[J]. Mechanical Systems and Signal Processing, 2022, 168: 108634. doi: 10.1016/j.ymssp.2021.108634
    [23] 冯青松, 戴承欣, 郭文杰, 等. 周期性钢弹簧浮置板轨道垂向振动带隙特性研究[J]. 中国铁道科学, 2022, 43(1): 17-28.

    FENG Qingsong, DAI Chengxin, GUO Wenjie, et al. Study on vertical vibration band gap properties of periodic steel spring floating slab track[J]. China Railway Science, 2022, 43(1): 17-28.
    [24] WU T X, LIU H P. Reducing the rail component of rolling noise by vibration absorber: theoretical prediction[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2009, 223(5): 473-483. doi: 10.1243/09544097JRRT263
    [25] XIAO X B, LI Y G, ZHONG T S, et al. Theoretical investigation into the effect of rail vibration dampers on the dynamical behaviour of a high-speed railway track[J]. Journal of Zhejiang University: Science A, 2017, 18(8): 631-647. doi: 10.1631/jzus.A1600697
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  41
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-04
  • 修回日期:  2024-08-28
  • 网络出版日期:  2025-11-08

目录

    /

    返回文章
    返回