Analysis of Subsidence Induced by Negative Pressure from Precipitation in Covered Karst Soil Cave and Its Morphological Effects
-
摘要:
为揭示覆盖型岩溶降水引发的土洞洞内气压变化规律及其致陷机理,基于气体短管淹没出流理论,提出椭球形土洞内气体渗流流量、气压及稳定性系数的计算方法,并基于有限差分数值解编制相应的MATLAB程序;通过岩溶土洞降水致陷的室内模型试验验证计算方法的可行性. 算例分析结果表明:土洞气体状态参量(流量与气压)及其稳定性系数在降水过程中经历了从初始状态到降水前期剧变、过降水后期缓变的过程,最终逐渐恢复至起初状态;降水土洞的最大峰值流量与椭球土洞短半轴长$ b $正相关,与长、短半轴长之比($ a / b $)及拱高负相关;最小峰值气压均与$ a / b $、$ b $及拱高正相关;最小峰值气压抵达时间与拱高正相关,与$ a / b $负相关,$ b $影响甚小;降水土洞最小峰值稳定性系数与$ a / b $及拱高正相关,与$ b $负相关;最小峰值稳定性系数抵达时间与拱高正相关,与$ a / b $则负相关,$ b $影响甚微.
Abstract:In order to reveal the air pressure variation law and the subsidence mechanism in covered karst soil cave induced by precipitation, according to the theory of short gas pipe submerged flow, calculation methods of gas seepage flow, air pressure, and stability coefficient in ellipsoid cave were obtained. MATLAB program was compiled based on finite difference numerical solutions. The feasibility of calculation methods was verified through indoor model tests of subsidence induced by precipitation in a karst soil cave. The example analysis has shown that the gas state parameters (flow and pressure) and stability coefficient of the cave evolved from the initial state to drastic variations in the early stage of precipitation, then shifted to gradual changes in the later stage, and finally returned to the initial state. The maximum peak flow of soil cave induced by precipitation is positively correlated with the length of the semi-minor axis
b of the ellipsoid cave, and negatively correlated with the ratio of semi-major axis and semi-minor axis $ a / b $, and arch height. The minimum peak air pressure is positively correlated with $ a / b $, $ b $, and arch height. The arrival time of the minimum peak air pressure is positively correlated with arch height, and negatively correlated with $ a / b $, while the effect of $ b $ is negligible. The minimum peak stability coefficient of soil cave induced by precipitation is positively correlated with $ a / b $ and arch height and negatively correlated with $ b $. The arrival time of the minimum peak stability coefficient is positively correlated with arch height, and negatively correlated with $ a / b $, while the effect of $ b $is negligible. -
[1] JIANG X Z, ZHOU W F, GUANG Z D, et al. Analysis of sinkholes in a karst area adjacent to three mines in South China[J]. Discover Water, 2023, 3(1): 6.1-6.12. [2] 高宗军, 王敏, 成世才, 等. 岩溶地面塌陷的水-岩耦合模型[J]. 昆明理工大学学报(理工版), 2009, 34(3): 6-11, 23.GAO Zongjun, WANG Min, CHENG Shicai, et al. Water-rock coupled forecasting model of karst collapse[J]. Journal of Kunming University of Science and Technology (Science and Technology), 2009, 34(3): 6-11,23. [3] 石树静, 张勤军, 康志强. 南宁市坛洛镇岩溶塌陷群成因机制分析[J]. 中国岩溶, 2015, 34(5): 507-514.SHI Shujing, ZHANG Qinjun, KANG Zhiqiang. Formation mechanism and development process of karst collapses in Tanluo town of Nanning City[J]. Carsologica Sinica, 2015, 34(5): 507-514. [4] CAHALAN M D, MILEWSKI A M. Sinkhole formation mechanisms and geostatistical-based prediction analysis in a mantled karst terrain[J]. Catena, 2018, 165: 333-344. doi: 10.1016/j.catena.2018.02.010 [5] 肖攀, 彭轲, 李雪平, 等. 红层岩溶发育特征与地面塌陷形成机理: 以咸宁地区为例[J]. 科学技术与工程, 2019, 19(33): 86-93.XIAO Pan, PENG Ke, LI Xueping, et al. Development characteristics of redbed Karst and formation mechanism of ground collapse: taking Xianning for example[J]. Science Technology and Engineering, 2019, 19(33): 86-93. [6] JIA L, LI L J, MENG Y, et al. Responses of cover-collapse sinkholes to groundwater changes: a case study of early warning of soil cave and sinkhole activity on Datansha Island in Guangzhou, China[J]. Environmental Earth Sciences, 2018, 77(13): 488.1-488.11. [7] XIAO X X, LI Z F, CAI G J, et al. Effects of declining water levels on water-air interactions in cover collapse sinkhole[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(3): 2545-2556. doi: 10.1007/s10064-020-02089-y [8] PAN Z Y, CHEN X J, YANG X, et al. Formation mechanism analysis of cover collapse sinkholes in Wugaishan Town, Chenzhou City, Hunan province, China[J]. Environmental Earth Sciences, 2022, 81(2): 48.1-48.16. [9] 贺可强, 王滨, 万继涛. 枣庄岩溶塌陷形成机理与致塌模型的研究[J]. 岩土力学, 2002, 23(5): 564-569, 574.HE Keqiang, WANG Bin, WAN Jitao. Study on forming mechanism of Zaozhuang karst collapse and collapse model[J]. Rock and Soil Mechanics, 2002, 23(5): 564-569,574. [10] 蒋小珍. 岩溶塌陷中水压力的触发作用[J]. 中国地质灾害与防治学报, 1998, 9(3): 42-47.JIANG Xiaozhen. Inducement of karst collapse from groundwater pressure[J]. The Chinese Journal of Geological Hazard and Control, 1998, 9(3): 42-47. [11] 蒋小珍, 雷明堂, 管振德. 单层土体结构岩溶土洞的形成机理[J]. 中国岩溶, 2012, 31(4): 426-432. doi: 10.3969/j.issn.1001-4810.2012.04.012JIANG Xiaozhen, LEI Mingtang, GUAN Zhende. Formation mechanism of karst soil-void in single-layer soil structure condition[J]. Carsologica Sinica, 2012, 31(4): 426-432. doi: 10.3969/j.issn.1001-4810.2012.04.012 [12] 熊启华, 曾嘉, 王芮琼, 等. 武汉长江Ⅰ级阶地覆盖型岩溶塌陷成因及力学模型研究[J]. 资源环境与工程, 2020, 34(3): 408-412.XIONG Qihua, ZENG Jia, WANG Ruiqiong, et al. Study on the genesis and mechanical model of karst collapse in the first-order terrace of Wuhan Yangtze River[J]. Resources Environment & Engineering, 2020, 34(3): 408-412. [13] 杨洋, 曹兴民, 冯福, 等. 贵州岩鱼坡立谷岩溶塌陷机理分析[J]. 辽宁工程技术大学学报(自然科学版), 2016, 35(10): 1081-1084. doi: 10.11956/j.issn.1008-0562.2016.10.014YANG Yang, CAO Xingmin, FENG Fu, et al. Mechanism analysis of karst collapse at polie of Yanyu, Guizhou[J]. Journal of Liaoning Technical University (Natural Science), 2016, 35(10): 1081-1084. doi: 10.11956/j.issn.1008-0562.2016.10.014 [14] 李前银. 再论岩溶塌陷的形成机制[J]. 中国地质灾害与防治学报, 2009, 20(3): 52-55.LI Qianyin. Further study on formation mechanism of karst collaps[J]. The Chinese Journal of Geological Hazard and Control, 2009, 20(3): 52-55. [15] XIAO X X, XU M, DING Q Z, et al. Experimental study investigating deformation behavior in land overlying a Karst cave caused by groundwater level changes[J]. Environmental Earth Sciences, 2018, 77(3): 64.1-64.11. [16] XIAO X X, GUTIÉRREZ F, GUERRERO J. The impact of groundwater drawdown and vacuum pressure on sinkhole development. Physical laboratory models[J]. Engineering Geology, 2020, 279: 105894.1-105894.10. [17] 郭亮. 地下水降落诱发洞室负压试验研究[D]. 重庆: 重庆交通大学, 2021. [18] 陈航. 贵州水城盆地包气带土洞塌陷发育模式及过程模拟研究[D]. 西安: 长安大学, 2022. [19] 陈国亮, 陈裕昌, 谭鸿增, 等. 岩溶地面塌陷机制、预测及整治研究[J]. 地质灾害与防治, 1990, 1(3): 39-48.CHEN Guoliang, CHEN Yuchang, TAN Hongzeng, et al. Research on mechanism, prediction and countermeasure for land-collapse in Karst area[J]. Journal of Geological Hazard and Control, 1990, 1(3): 39-48. [20] 陈洪凯, 梁丹, 董平. 岩溶洞穴土质盖层稳定性分析方法及应用[J]. 地下空间与工程学报, 2016, 12(2): 546-552.CHEN Hongkai , LIANG Dan , DONG Ping. The stability analysis methods and its application for soil cover of Karst cave[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(2): 546-552. [21] 丁庆忠. 弱透水盖层岩溶塌陷的水—气压力致塌机理物理模型研究[D]. 成都: 成都理工大学, 2016. [22] 刘鹤年, 刘京. 流体力学[M]. 3版. 北京: 中国建筑工业出版社, 2016. [23] 曾春娜, 王贺军, 李冉, 等. 两类特殊椭球缺的体积与表面积[J]. 西南师范大学学报(自然科学版), 2015, 40(6): 15-19.ZENG Chunna, WANG Hejun, LI Ran, et al. On two formulas for volume and surface area of two special ellipsoidal cap[J]. Journal of Southwest China Normal University (Natural Science Edition), 2015, 40(6): 15-19. [24] 郭锐剑, 陈学军, 段建, 等. 考虑空间形状的覆盖型岩溶土洞降水致陷分析[J]. 西南交通大学学报, 2023, 58(2): 453-461.GUO Ruijian, CHEN Xuejun, DUAN Jian, et al. Analysis on precipitation-induced subsidence of covered karst soil caves regarding spatial shape[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 453-461. [25] 中华人民共和国住房和城乡建设部. 建筑边坡工程技术规范: GB 50330—2013[S]. 北京: 中国建筑工业出版社, 2014. -
下载: