• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

地铁道岔区装配式轨道的安全性能及减振效果

陈鹏 戴传青 刘观 焦雷 辛涛

陈鹏, 戴传青, 刘观, 焦雷, 辛涛. 地铁道岔区装配式轨道的安全性能及减振效果[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240234
引用本文: 陈鹏, 戴传青, 刘观, 焦雷, 辛涛. 地铁道岔区装配式轨道的安全性能及减振效果[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240234
CHEN Peng, DAI Chuanqing, LIU Guan, JIAO Lei, XIN Tao. Safety Performance and Vibration Reduction Effects of Prefabricated Slab Track in Metro Turnout Areas[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240234
Citation: CHEN Peng, DAI Chuanqing, LIU Guan, JIAO Lei, XIN Tao. Safety Performance and Vibration Reduction Effects of Prefabricated Slab Track in Metro Turnout Areas[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240234

地铁道岔区装配式轨道的安全性能及减振效果

doi: 10.3969/j.issn.0258-2724.20240234
基金项目: 国家重点研发计划(2024YFB3713002);111引智基地项目(B20040)
详细信息
    作者简介:

    陈鹏 (1981—),男,正高级工程师,博士,研究方向为城市轨道交通轨道工程设计及技术创新,E-mail:55974844@qq.corn

    通讯作者:

    辛涛 (1985—),男,教授,博士,研究方向为轨道动力学,E-mail:xint@bjtu.edu.cn

  • 中图分类号: U213.6

Safety Performance and Vibration Reduction Effects of Prefabricated Slab Track in Metro Turnout Areas

  • 摘要:

    为研究装配式减振轨道应用于地铁道岔区的动力性能,基于考虑了约束效应的板-垫层间接触关系以及道岔区轮轨多点接触理论,以某典型装配式轨道为例,对其在列车荷载作用下的混凝土强度和极限弯矩承载力开展安全性能检算;建立了车-岔-隧耦合动力分析模型,在地铁道岔区采用不同板厚和刚度的装配式减振轨道条件下,利用自编联合仿真程序研究了列车过岔时系统动力学响应和减振效果情况. 研究结果表明:装配式减振轨道在地铁A型车的荷载条件下,轨道板、自密实混凝土层的最大拉应力分别为2.48、1.89 MPa;道岔区各轨道板纵向和横向钢筋的正截面极限弯矩承载力均大于横向荷载弯矩和纵向荷载弯矩;列车以55 km/h的速度通过道岔区,轨道板厚度从180 mm增加到300 mm时,各减振轨道的插入损失分别为8.1、9.3、10.0、10.7 dB,动力响应均满足安全性能要求;当板厚为260 mm,减振垫刚度从0.01 N/mm3增加到0.04 N/mm3时,各工况的插入损失分别为15.0、10.0、8.0、5.2 dB;刚度为0.01 N/mm3时,尖轨和心轨垂向位移分别为4.1 mm和5.2 mm. 综合安全性能、经济效益和减振效果,建议装配式减振轨道板厚为220~260 mm,减振垫刚度为0.019~0.030 N/mm3.

     

  • 图 1  车辆-轨道拓扑结构

    Figure 1.  Vehicle–track topology structure

    图 2  轮轨两点接触示意

    Figure 2.  Two-point wheel-rail contact

    图 3  转辙器区轮轨两点接触力

    Figure 3.  Wheel-rail forces of two-point contact in switch panel

    图 4  9号道岔平面线形(单位:m)

    Figure 4.  Plan alignment of No.9 turnout (unit: m)

    图 5  装配式轨道断面示意

    Figure 5.  Cross-section of PST

    图 6  纵断面有限元剖面

    Figure 6.  Longitudinal finite element section

    图 7  列车直向过岔

    Figure 7.  Train passing through main line of turnout

    图 8  列车侧向过岔

    Figure 8.  Train passing through branch line of turnout

    图 9  自密实混凝土层最大拉应力

    Figure 9.  Maximum tensile stress of self-compacting concrete layer

    图 10  各轨道板极限弯矩承载力及荷载作用下弯矩值

    Figure 10.  Ultimate bending moment capacity and bending moment under load of each PST slab

    图 11  隧道壁分频振级

    Figure 11.  Vibration levels of tunnel wall at different frequencies

    图 12  隧道壁最大Z振级

    Figure 12.  Maximum Z-direction vibration level of tunnel wall

    图 13  不同减振垫刚度下隧道壁垂向振动加速度分频振级

    Figure 13.  Vertical vibration acceleration levels of tunnel wall with different pad stiffnesses

    图 14  不同减振垫刚度轨道的最大Z振级

    Figure 14.  Maximum Z-direction vibration level of tunnel wall with different pad stiffnesses

    图 15  列车直向过岔时轮轨力时程图

    Figure 15.  Time history of wheel-rail forces when train passes through turnout

    图 16  列车直向过岔时安全性指标

    Figure 16.  Safety indicators when train passes through turnout

    图 17  列车直向过岔时车体加速度

    Figure 17.  Car body acceleration when train passes through turnout

    图 18  列车过岔时钢轨加速度及位移

    Figure 18.  Rail acceleration and displacement when the train passes through turnout

    表  1  地铁A型车动力学参数

    Table  1.   Dynamic parameters of metro type-A vehicle

    名称 数值
    定距/m 15.7
    轴距/m 2.5
    车体质量/kg 54880
    车体侧滚转动惯量/(kg•m2 128000
    车体点头转动惯量/(kg•m2 1940000
    车体摇头转动惯量/(kg•m2 1670000
    转向架质量/kg 2721
    转向架侧滚转动惯量/(kg•m2 2592
    转向架点头转动惯量/(kg•m2 1752
    转向架摇头转动惯量/(kg•m2 3200
    轮对质量/kg 1900
    轮对侧滚转动惯量/(kg•m2 720
    轮对摇头转动惯量/(kg•m2 1783
    一系悬挂垂向刚度/(kN·m−1 2140
    一系悬挂垂向阻尼/(kN•s∙m−1 49
    二系悬挂垂向刚度/(kN·m−1 2500
    二系悬挂垂向阻尼/(kN•s∙m−1 196
    下载: 导出CSV

    表  2  轨道结构各部件力学参数

    Table  2.   Mechanical parameters of track components

    部件 参数名称 数值
    钢轨 弹性模量/Pa 2.06 × 1011
    泊松比 0.33
    密度/(kg·m−3 7850
    扣件 垂向刚度/(MN·m−1 20
    横向刚度/(MN·m−1 30
    垂/横向阻尼/(N·s·m−1 5 × 104
    轨道板 弹性模量/Pa 3.55 × 1010
    密度/(kg·m−3 2500
    减振垫 弹性模量/Pa 6.00 × 105
    泊松比 0.20
    密度/(kg·m−3 400
    自密实混凝土 弹性模量/Pa 3.25 × 1010
    密度/(kg·m−3 2450
    下载: 导出CSV

    表  3  隧道结构参数

    Table  3.   Parameters of tunnel structure

    部件 参数 数值
    隧道壁弹性模量/Pa3.60 × 1010
    泊松比0.20
    密度/(kg·m−32500
    土体弹性模量/Pa2.00 × 108
    泊松比0.20
    密度/(kg·m−32350
    下载: 导出CSV

    表  4  振动源强数据结果对比

    Table  4.   Comparison of vibration source intensity data

    结果 隧道壁最大加速度/(m·s−2 轨道板最大加速度/(m·s−2 隧道壁垂向振动加速度主频/Hz 隧道壁主频对应振级/dB
    转辙器区 辙叉区 转辙器区 辙叉区 转辙器区 辙叉区 转辙器区 辙叉区
    仿真 0.17 0.24 9.71 6.67 63 80 76 74
    文献 0.10~0.20 0.20~0.30 3.70~22.20 6.20~7.40 63~80 63~80 70~78 70~76
    下载: 导出CSV

    表  5  车-岔耦合系统动力学响应

    Table  5.   Dynamic responses of vehicle–turnout coupling system

    板厚/
    mm
    轮轨垂向力/
    kN
    横向力/kN轮重减载率车体加速度/(m·s−2Sperling加速度/(m·s−2位移量/mm道床位移/mm
    轮轨轮轴垂向横向垂向横向尖轨心轨尖轨心轨转辙区辙叉区
    180118.086.538.860.470.100.080.780.92265.87380.112.323.531.841.75
    220106.787.2910.040.340.100.080.780.92269.06485.882.303.451.811.75
    260105.077.7510.980.360.100.080.780.92265.29489.052.293.411.771.74
    300102.857.9711.810.390.100.080.780.92264.02324.792.293.381.761.73
    下载: 导出CSV
  • [1] 杨宜谦, 刘鹏辉, 房斌, 等. 城市轨道交通地下线振动源机理和频率特性[J]. 振动与冲击, 2023, 42(4): 171-178.

    YANG Yiqian, LIU Penghui, FANG Bin, et al. Vibration source mechanism and frequency characteristics of underground lines of urban rail transits[J]. Journal of Vibration and Shock, 2023, 42(4): 171-178.
    [2] 冯青松, 王子玉, 刘全民, 等. 地铁车辆段不同区域振动特性对比分析[J]. 振动与冲击, 2020, 39(14): 179-185, 200.

    FENG Qingsong, WANG Ziyu, LIU Quanmin, et al. Comparative analysis of environmental vibration characteristics in different regions of a metro depot[J]. Journal of Vibration and Shock, 2020, 39(14): 179-185, 200.
    [3] ZHU S Y, WANG J W, CAI C B, et al. Development of a vibration attenuation track at low frequencies for urban rail transit[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(9): 713-726. doi: 10.1111/mice.12285
    [4] KEDIA N K, KUMAR A, SINGH Y. Effect of rail irregularities and rail pad on track vibration and noise[J]. KSCE Journal of Civil Engineering, 2021, 25(4): 1341-1352. doi: 10.1007/s12205-021-1345-6
    [5] VOGIATZIS K, MOUZAKIS H. Ground_borne noise and vibration transmitted from subway networks to multi_storey reinforced concrete buildings[J]. Transport, 2018, 33(2): 446-453.
    [6] 李小珍, 高慰, 雷康宁, 等. 高速列车对站房振动噪声影响的试验研究[J]. 西南交通大学学报, 2020, 55(5): 1067-1075. doi: 10.3969/j.issn.0258-2724.20190065

    LI Xiaozhen, GAO Wei, LEI Kangning, et al. Vibration and noise measurement of railway station hall induced by high-speed trains[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1067-1075. doi: 10.3969/j.issn.0258-2724.20190065
    [7] 徐井芒, 郑兆光, 赖军, 等. 轨道参数对高速道岔轮轨接触行为的影响[J]. 西南交通大学学报, 2022, 57(5): 990-999. doi: 10.3969/j.issn.0258-2724.20210449

    XU Jingmang, ZHENG Zhaoguang, LAI Jun, et al. Influence of track parameters on wheel/rail contact behavior of high-speed turnout[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 990-999. doi: 10.3969/j.issn.0258-2724.20210449
    [8] QIAN Y, WANG P, XIE K Z, et al. Development and application of a calculation method for the equivalent conicity in high-speed turnout Zones[J]. Vehicle System Dynamics, 2022, 60(1): 96-113. doi: 10.1080/00423114.2020.1802046
    [9] HAO C J, WANG P, XU J M, et al. Investigation of transient wheel-rail interaction and interface contact behaviour in movable-point crossing panel[J]. Vehicle System Dynamics, 2024, 62(5): 1103-1121. doi: 10.1080/00423114.2023.2217962
    [10] 陈嵘, 王雪彤, 陈嘉胤, 等. 轮对安装偏角对高速列车过转辙器的动力特性影响[J]. 西南交通大学学报, 2021, 56(4): 872-882.

    CHEN Rong, WANG Xuetong, CHEN Jiayin, et al. Influence of wheelset installation deflection angle on dynamic characteristics of high-speed vehicles crossing switch[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 872-882.
    [11] 王树国, 王璞, 葛晶, 等. 高速道岔尖轨磨耗特征及管理限值研究[J]. 中国铁道科学, 2022, 43(1): 9-16. doi: 10.3969/j.issn.1001-4632.2022.01.02

    WANG Shuguo, WANG Pu, GE Jing, et al. Study on wear characteristics and management limit of switch rail in high-speed turnout[J]. China Railway Science, 2022, 43(1): 9-16. doi: 10.3969/j.issn.1001-4632.2022.01.02
    [12] GAO X, YI Q, LEI J X, et al. Experimental study on the characteristics of vibration energy propagation in the subway turnout area[J]. Construction and Building Materials, 2023, 409: 134210. doi: 10.1016/j.conbuildmat.2023.134210
    [13] JIANG B L, MA M, LI M H, et al. Experimental study of the vibration characteristics of the floating slab track in metro turnout zones[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233(10): 1081-1096. doi: 10.1177/0954409719826824
    [14] 曾志平, 曾强, 郭无极, 等. 9号道岔区铺设减振垫浮置板的行车安全性及舒适性研究[J]. 铁道科学与工程学报, 2024, 21(3): 1015-1024.

    ZENG Zhiping, ZENG Qiang, GUO Wuji, et al. Safety and comfort study of vibration-reduction pad floating slab applied to No. 9 turnout[J]. Journal of Railway Science and Engineering, 2024, 21(3): 1015-1024.
    [15] 张政, 娄会彬, 孙立, 等. 减振型装配式轨道设计方案理论与试验研究[J]. 西南交通大学学报, 2023, 58(3): 630-637. doi: 10.3969/j.issn.0258-2724.20210517

    ZHANG Zheng, LOU Huibin, SUN Li, et al. Theoretical and experimental study on design scheme of vibration damping prefabricated track[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 630-637. doi: 10.3969/j.issn.0258-2724.20210517
    [16] 高原, 廖涛, 王树国, 等. 高速道岔焊接接头区轮轨接触-冲击瞬态响应分析[J/OL]. 西南交通大学学报, 2025: 1-10. (2025-05-22). http://kns.cnki.net/kcms/detail/51.1277.U.20241231.1556.016.html.

    GAO Yuan, LIAO Tao, WANG Shuguo, et al. Numerical analysis of transient wheel-rail impact in high speed turnouts caused by rail weld irregularity[J/OL]. Journal of Southwest Jiaotong University, 2025: 1-10. (2025-05-22). http://kns.cnki.net/kcms/detail/51.1277.U.20241231.1556.016.html.
    [17] 王平, 李抒效, 闫正, 等. 板间离缝对高速道岔转辙器区轨道动力响应的影响[J]. 中南大学学报(自然科学版), 2023, 54(12): 4946-4955. doi: 10.11817/j.issn.1672-7207.2023.12.030

    WANG Ping, LI Shuxiao, YAN Zheng, et al. Influence of debonding between layers on dynamic mechanical response of track structure in switch panel of high-speed turnout[J]. Journal of Central South University (Science and Technology), 2023, 54(12): 4946-4955. doi: 10.11817/j.issn.1672-7207.2023.12.030
    [18] 马晓川, 徐井芒, 王平, 等. 铁路道岔转辙器部件轮轨两点接触计算方法研究[J]. 铁道学报, 2019, 41(7): 155-161. doi: 10.3969/j.issn.1001-8360.2019.07.020

    MA Xiaochuan, XU Jingmang, WANG Ping, et al. Study on wheel-rail two-point contact calculation in switch panel of railway turnout[J]. Journal of the China Railway Society, 2019, 41(7): 155-161. doi: 10.3969/j.issn.1001-8360.2019.07.020
    [19] 施以旋, 戴焕云, 毛庆洲, 等. 基于车轨耦合的地铁车轮多边形形成机理[J]. 西南交通大学学报, 2024, 59(6): 1357-1367, 1388.

    SHI Yixuan, DAI Huanyun, MAO Qingzhou, et al. Formation mechanism of metro wheel polygonal based on vehicle-track coupling[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1357-1367, 1388.
    [20] 姜晓文, 郭世豪, 王文通. 地铁装配式预制板无砟轨道结构优化分析[J]. 铁道科学与工程学报, 2021, 18(12): 3164-3171.

    JIANG Xiaowen, GUO Shihao, WANG Wentong. Optimization analysis of prefabricated slab track structure for subway[J]. Journal of Railway Science and Engineering, 2021, 18(12): 3164-3171.
    [21] 韦凯, 王森, 马蒙, 等. 地铁轨道长波不平顺与轮轨短波粗糙度谱研究[J/OL]. 西南交通大学学报, 2025: 1-10. (2025-05-22) http://kns.cnki.net/kcms/detail/51.1277.U.20250506.1104.004.html.

    WEI Kai, WANG Sen, MA Meng, et al. Research on Long-Wave Irregularity of Metro Track and Short-Wave Roughness Spectrum of Wheel-Rail Contact[J/OL]. Journal of Southwest Jiaotong University, 2025: 1-10. (2025-05-22). http://kns.cnki.net/kcms/detail/51.1277.U.20250506.1104.004.html.
    [22] 柯文华. 地铁9号道岔岔区振动源强特性测试与分析研究[D]. 成都: 西南交通大学, 2019.
    [23] 中国铁路总公司. 铁路轨道设计规范(极限状态法): Q/CR 9130—2018[S]. 北京: 中国铁道出版社, 2019.
    [24] 中华人民共和国生态环境部. 环境影响评价技术导则 城市轨道交通: HJ 453-2018 [S]. 北京: 中国环境出版社, 2019.
    [25] 国际标准化组织. 人体暴露于全身振动的评估 第1部分: 一般要求: ISO 2631-1: 1985 EN[S]. 1985.
    [26] 韦凯, 刘延滨, 王显, 等. 德标减振轨道插入损失率的理论修正方法及应用[J/OL]. 西南交通大学学报, 2024: 1-10. (2024-07-05). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=XNJT2024070200B&dbname=CJFD&dbcode=CJFQ.

    WEI Kai, LIU Yanbin, WANG Xian, et al. Theoretical correction method and application of insertion loss rate of German standard damping track[J/OL]. Journal of Southwest Jiaotong University, 2024: 1-10. (2024-07-05). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=XNJT2024070200B&dbname=CJFD&dbcode=CJFQ.
  • 加载中
图(18) / 表(5)
计量
  • 文章访问数:  188
  • HTML全文浏览量:  382
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-14
  • 修回日期:  2024-10-25
  • 网络出版日期:  2025-09-02

目录

    /

    返回文章
    返回