• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

柱塞泵缸体-主轴花键副微动损伤及疲劳预测

陈鼎 陈天星 叶绍干 苗克非 赵守军 刘会祥

陈鼎, 陈天星, 叶绍干, 苗克非, 赵守军, 刘会祥. 柱塞泵缸体-主轴花键副微动损伤及疲劳预测[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240162
引用本文: 陈鼎, 陈天星, 叶绍干, 苗克非, 赵守军, 刘会祥. 柱塞泵缸体-主轴花键副微动损伤及疲劳预测[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240162
CHEN Ding, CHEN Tianxing, YE Shaogan, MIAO Kefei, ZHAO Shoujun, LIU Huixiang. Prediction of Fretting Damage and Fatigue of Spline Pair Between Cylinder and Shaft of Piston Pump[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240162
Citation: CHEN Ding, CHEN Tianxing, YE Shaogan, MIAO Kefei, ZHAO Shoujun, LIU Huixiang. Prediction of Fretting Damage and Fatigue of Spline Pair Between Cylinder and Shaft of Piston Pump[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240162

柱塞泵缸体-主轴花键副微动损伤及疲劳预测

doi: 10.3969/j.issn.0258-2724.20240162
基金项目: 国家自然科学基金项目(52175062);福建省自然科学基金项目(2021J01049; 2021J011202);
详细信息
    作者简介:

    陈鼎(1985—),男,讲师,博士,研究方向为液压技术及振动控制研究,E-mail:chending@xmut.edu.cn

    通讯作者:

    叶绍干(1989—),男,副教授,博士,研究方向为液压元件及系统振动控制与可靠性设计及测试研究,E-mail: shaoganye@xmu.edu.cn

  • 中图分类号: TH322

Prediction of Fretting Damage and Fatigue of Spline Pair Between Cylinder and Shaft of Piston Pump

  • 摘要:

    柱塞泵在运行过程中,其缸体和主轴花键副的碰撞行为会加剧花键的齿面磨损,降低其运行可靠性. 为预知主轴花键的使用寿命,本文结合Archard模型和SWT (smith Watson topper)模型,对柱塞泵不同出口压力下花键副的微动损伤和疲劳寿命进行分析. 首先,通过有限元法建立轴向柱塞泵缸体-主轴花键副微动损伤有限元模型;其次,基于建立的有限元模型,对不同出口压力工况下的柱塞泵齿面Ruiz微动损伤参数的分布进行分析,并预估其花键齿面的微动磨损增量;最后,结合M-P (palmgren miner)规则,加上循环疲劳载荷的响应,得到预测的轴向柱塞泵的齿面疲劳寿命. 研究结果表明:柱塞泵花键齿面最大Ruiz损伤参数主要集中在花键齿面端部;柱塞泵花键两端的损伤较为严重,中部的损伤较轻,花键前端和后端的磨损量比中部的磨损量分别高出114%和62%;柱塞泵出口压力的变大会加剧齿面磨损,大大减少花键副使用寿命,出口压力为30 MPa时的寿命相较于20 MPa时的寿命降低60%. 研究结果对柱塞泵花键运行的可靠性和后续的优化分析具有一定指导意义.

     

  • 图 1  柱塞泵缸体-主轴花键副微动疲劳预测流程

    Figure 1.  Procedure for predicting the fretting fatigue of the spline pair between the cylinder and shaft of the piston pump

    图 2  柱塞泵缸体-主轴花键碰撞有限元模型

    Figure 2.  Finite element contact model of spline pair between cylinder and shaft of piston pump

    图 3  缸体受到的转矩脉动

    Figure 3.  Torque pulsation experienced by cylinder

    图 4  不同出口压力下的花键各齿面最大接触应力

    Figure 4.  Maximum contact stress on each tooth surface of spline at different outlet pressures

    图 5  不同出口压力下的花键各齿面最大接触滑移

    Figure 5.  Maximum contact slip on each tooth surface of spline at different outlet pressures

    图 6  不同出口压力下的花键各齿面最大FeFDP

    Figure 6.  Maximum FeFDP value on each tooth surface of spline at different outlet pressures

    图 7  不同出口压力下的齿面FeFDP值分布

    Figure 7.  Distribution of FeFDP values on tooth surfaces of spline at different outlet pressures

    图 8  不同出口压力下各位置的磨损增量预估

    Figure 8.  Prediction of wear increment at various locations at different outlet pressures

    图 9  不同出口压力下各齿的磨损量预估

    Figure 9.  Prediction of wear increment on each tooth at different outlet pressures

    图 10  不同出口压力下齿面累计疲劳

    Figure 10.  Cumulative fatigue of tooth surfaces at different outlet pressures

    表  1  缸体-主轴花键副参数

    Table  1.   Parameters of cylinder and shaft spline pair

    参数 齿数 压力角/(°) 齿顶圆直径/mm 齿厚/mm 泊松比 模数/mm 齿槽宽/mm 齿根圆直径/mm 弹性模量E/MPa
    外花键 16 30 12.75 1.31 0.28 0.75 1.12 1.12 211000
    内花键 16 30 11.36 1.29 0.28 0.75 1.04 13.13 211000
    下载: 导出CSV

    表  2  刚度阻尼设置参数

    Table  2.   Parameters of stiffness and damping

    参数名称 参数值
    轴承1沿Y向的刚度Ksh1y/(N•m−1 2.8 × 107
    轴承1沿Z向的刚度Ksh1z/(N•m−1 2.8 × 107
    轴承1沿Y向的阻尼Csh1y/(N•s•m−1 2.0 × 103
    轴承1沿Z向的阻尼Csh1z/(N•s•m−1 2.0 × 103
    轴承2沿Y向的刚度Ksh2y/(N•m−1 3.2 × 107
    轴承2沿Z向的刚度Ksh2z/(N•m−1 3.2 × 107
    轴承2沿Y向的阻尼Csh2y/(N•s•m−1 1.0 × 103
    轴承2沿Z向的阻尼Csh2z/(N•s•m−1 1.0 × 103
    轴承3沿Y向的刚度Ksh3y/(N•m−1 2.0 × 107
    轴承3沿Z向的刚度Ksh3z/(N•m−1 2.0 × 107
    轴承3沿Y向的阻尼Csh3y/(N•s•m−1 2.0 × 103
    轴承3沿Z向的阻尼Csh3z/(N•s•m−1 2.0 × 103
    缸体与配流盘间的刚度Kvp/(N•m−1 8.5 × 108
    缸体与配流盘间的阻尼Cvp/(N•s•m−1 1.0 × 103
    下载: 导出CSV

    表  3  柱塞泵花键疲劳寿命预测

    Table  3.   Prediction of fatigue life of spline pair of the piston pump

    出口压力值/MPa 预测寿命/万次 预测寿命/h
    20 1954 81.4
    25 1166 48.5
    30 772 32.1
    下载: 导出CSV
  • [1] Shaogan Ye, Junhui Zhang, Bing Xu, et al. Theoretical investigation of the contributions of the excitation forces to the vibration of an axial piston pump, Mechanical Systems and Signal Processing, 2019, 129: 201-217.
    [2] Manring, N. D. The Torque on the Input Shaft of an Axial-Piston Swash-Plate Type Hydrostatic Pump[J]. Journal of Dynamic Systems, Measurement, and Control, 1998, 120(01): 57-62. doi: 10.1115/1.2801322
    [3] Manring N D, Dong Z. The impact of using a secondary swash-plate angle within an axial piston pump[J]. Journal of Dynamic Systems, Measurement, and Control, 2004, 126(1): 65-74. doi: 10.1115/1.1648313
    [4] 王海涛, 崔永红, 董雪莲. 渐开线花键联接磨损特性研究[J]. 科技创新与应用, 2016(15): 5-6. doi: 10.19981/j.cn23-1581/g3.2016.15.003

    WANG Haitao, CUI Yonghong, DONG Xuelian. Study on Wear Characteristics of Involute Spline Connection[J]. Technology Innovation and Application, 2016(15): 5-6. doi: 10.19981/j.cn23-1581/g3.2016.15.003
    [5] Jeung H, Kwon J, Lee Y C. Crack initiation and propagation under fretting fatigue of inconel 600 alloy[J]. Journal of Mechanical Science and Technology, 2015, 29(12): 5241-5244. doi: 10.1007/s12206-015-1124-8
    [6] Cuffaro V, Curà F, Mura A, Test Rig for Spline Cou-plings Working in Misaligned Conditions[J]. Journal of Tribology, 2014, 136(1): 1-7.
    [7] Curà F, Mura A, Adamo F, Fatigue damage in spline couplings: numerical simulations and experimental vali-dation[J]. Procedia Structural Integrity. 2017, 5: 1326-1333.
    [8] J. Ding, W. S. Sum, R. Sabesan, et al. Fretting fatigue predictions in a complex coupling[J]. International Journal of Fatigue, 2007, 29(7) : 1229–1244.
    [9] Duan L, Ning K, Wang L, et al. Damage mechanisms of spline teeth of friction plates under non-uniform impact[J]. Engineering Fracture Mechanics, 2024, 296: 109859. doi: 10.1016/j.engfracmech.2024.109859
    [10] Xue X, Huo Q, Hong L. Fretting Wear-Fatigue Life Prediction for Aero-Engine’s Involute Spline Couplings Based on Abaqus[J]. Journal of Aerospace Engineering, 2019, 32(6): 04019081-04019081. doi: 10.1061/(ASCE)AS.1943-5525.0001058
    [11] Xue X, Jia J, Huo Q, et al. Experimental investigation and prediction method of fretting wear in rack-plane spline couplings[J]. Proceedings of the Institution of Mechanical Engineers Part J Journal of Engineering Tribology, 2020, 235(5): 1025-1037. doi: 10.1177/1350650120939838
    [12] Xiangzhen X, Yifan L, Liqi S, et al. Mechanism and prediction method of fretting damage in involute spline couplings of aero-engine[J]. Engineering Failure Analysis, 2023, 148.
    [13] 肖立, 徐颖强, 陈智勇, 等. 直升机浮动渐开线花键微动磨损影响因素分析[J]. 航空动力学报, 2021, 36(4): 751-766. doi: 10.13224/j.cnki.jasp.2021.04.008

    Xiao Li, Xu Yingqiang, Chen Zhiyong, et al. Analysis of influencing factors of fretting wear with helicopter floating involute spline[J]. Journal of Aerospace Power, 2021, 36(4): 751-766. doi: 10.13224/j.cnki.jasp.2021.04.008
    [14] 肖立, 徐颖强, 陈智勇, 等. 浮动渐开线花键微动损伤及磨损疲劳预测[J]. 西北工业大学学报, 2022, 40(3): 549-559. doi: 10.3969/j.issn.1000-2758.2022.03.010

    Xiao Li, Xu Yingqiang, Chen Zhiyong, et al. Prediction of fretting damage and wear fatigue of floating involute spline couplings[J]. Northwestern polytechnical university., 2022, 40(3): 549-559. doi: 10.3969/j.issn.1000-2758.2022.03.010
    [15] 陈壮, 董庆兵, 罗振涛, 等. 花键微动磨损和损伤累积的耦合机制及寿命预测[J]. 机械工程学报, 2023, 59(3): 133-143.

    Chen Zhuang, Dong Qingbing, Luo Zhentao, et al. Coupling Mechanism of Fretting Wear and Damage Accumulation of Spline Couplings and Service Life Prediction[J]. Journal of Mechanical Engineering, 2023, 59(3): 133-143.
    [16] 袁周致远, 吉伯海, 傅慧, 等. 疲劳裂纹气动冲击的维修机理及效果[J]. 西南交通大学学报, 2024, 59(2): 307-314.

    YUANZHOU Zhiyuan, JI Bohai, FU Hui, et al. Fatigue Crack Repair Mechanism and Effect by Pneumatic Impact Treatment[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 307-314.
    [17] 喻天翔, 赵庆岩, 尚柏林, 等. 考虑间隙不确定性的花键概率疲劳寿命预测方法[J]. 机械工程学报, 2022, 58(16): 391-402.

    Yu Tianxiang, Zhao Qingyan, Shang Bolin, et al. Probabilistic Fatigue Life Prediction Method of Spline Considering Clearance Uncertainty[J]. Journal of Mechanical Engineering, 2022, 58(16): 391-402.
    [18] 董丙杰, 陈光雄, 冯晓航, 等. 钢轨波磨激励下的e型弹条振动疲劳断裂机理[J]. 西南交通大学学报, 2025, 60(5): 1287-1295.

    DONG Bingjie, CHEN Guangxiong, FENG Xiaohang, et al. Vibration Fatigue Fracture Mechanism of e-Type Clip Under Rail Corrugation Excitation[J]. Journal of Southwest Jiaotong University, 2025, 60(5): 1287-1295.
    [19] Ruiz C, Wang Z P, Webb P H. Techniques for the characterization of fretting fatigue damage[J]. ASTM SPECIAL TECHNICAL PUBLICATION, 1992, 1159: 170. doi: 10.1520/stp25829s
    [20] Vidner J, Leidich E. Enhanced Ruiz criterion for the evaluation of crack initiation in contact subjected to fretting fatigue[J]. International Journal of Fatigue, 2007, 29(9-11): 2040-2049. doi: 10.1016/j.ijfatigue.2007.02.010
    [21] Madge J, Leen S, Shipway P. The critical role of fretting wear in the analysis of fretting fatigue[J]. Wear, 2006, 263(1): 542-551. doi: 10.1016/j.wear.2006.11.021
    [22] 薛向珍. 航空渐开线花键副微动磨损机理及磨损量预估方法研究[D]. 西北工业大学, 2017.

    Xue Xiangzhen. Investigation on maechanism and prediction method of fretting wear in aero-engine involute spline coupling[D]. Northwestern polytechnical university, 2017.
    [23] J. Ding, S. B. Leen, E. J. Williams, et al. Finite element simulation of fretting wear-fatigue interaction in spline couplings[J], Tribology-Materials, Surfaces & Interfaces, 2008, 2: 1, 10-24.
    [24] Smith K N, Topper T H, Watson P. A stress–strain function for the fatigue of metals[J]. Journal of Materials, 1970, 5: 767-778.
    [25] Madge J, Leen S, McColl I, et al. Contact-evolution based prediction of fretting fatigue life: Effect of slip amplitude[J]. Wear, 2006, 262(9): 1159-1170. doi: 10.1016/j.wear.2006.11.004
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  15
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-01
  • 修回日期:  2024-06-13
  • 网络出版日期:  2026-01-13

目录

    /

    返回文章
    返回