Dynamic Characteristic Analysis of Basalt Fiber Foam Concrete Subgrade for Ballastless Track
-
摘要:
玄武岩纤维泡沫混凝土可作为无砟轨道路基新型填料,为分析其动力性能,通过室内动三轴试验,获取玄武岩纤维泡沫混凝土的动力学基本参数;进一步,构建玄武岩纤维泡沫混凝土无砟轨道路基的足尺室内模型,揭示其在周期荷载作用下的动力学响应;此外,建立玄武岩纤维泡沫混凝土的车-轨-路三维有限元计算模型,分析路基结构在高速行车条件下的变形特性. 研究结果表明:掺入玄武岩纤维后,泡沫混凝土的动力学性能得到增强,玄武岩纤维掺量为0.6%时,达到最优配比,相较于未掺加玄武岩纤维的泡沫混凝土动强度提高90.8%,阻尼比提高46.2%,动模量提高98.1%;玄武岩增强泡沫混凝土无砟轨道路基的整体性较好,荷载能够较为均匀的向下扩散,路基表层动应力最大值为19.37 kPa;通过数值模拟分析,路基振动在高频荷载作用下能够更快恢复平稳状态,在高速行车条件下玄武岩纤维泡沫混凝土路基表面的最大沉降为0.30 mm,相比于传统路基结构,玄武岩纤维泡沫混凝土路基在列车荷载作用下,振动响应频率高,产生的噪声更易控制.
Abstract:Basalt fiber foam concrete can be used as a novel subgrade filler for ballastless tracks. In order to analyze its dynamic performance, fundamental dynamic parameters of basalt fiber foam concrete were obtained through laboratory dynamic triaxial tests. Furthermore, a full-scale laboratory model of a ballastless track subgrade constructed with basalt fiber foam concrete was developed to reveal its dynamic response under cyclic loading. Additionally, a three-dimensional vehicle–track–subgrade finite element model was established to analyze the deformation characteristics of the subgrade structure under high-speed train operation. The results indicate that the dynamic performance of foam concrete is enhanced after the incorporation of basalt fibers. When the basalt fiber content reaches 0.6%, the optimal mix proportion is achieved, with dynamic strength increased by 90.8%, damping ratio by 46.2%, and dynamic modulus by 98.1% compared to foam concrete without basalt fibers. The ballastless track subgrade reinforced by basalt fiber foam concrete exhibits good overall integrity, and the applied load is distributed more uniformly downward, with a maximum dynamic stress of 19.37 kPa at the subgrade surface. Numerical simulation analysis indicates under high-frequency loading, subgrade vibration can stabilize more rapidly. Under high-speed train operation, the maximum surface settlement of the basalt fiber foam concrete subgrade is 0.30 mm. Compared with conventional subgrade structures, the basalt fiber foam concrete subgrade shows a high vibration response frequency and makes noise more controllable under train loads.
-
Key words:
- high-speed railway /
- railway subgrade /
- foam concrete /
- basalt fiber /
- dynamic performance
-
表 1 纤维增强泡沫混凝土材料设计
Table 1. Fiber-reinforced foam concrete material design
密度/(kg·m−3) 纤维含量/% 700 0,0.2,0.4,0.6,0.8,1.0 1000 0,0.2,0.4,0.6,0.8,1.0 表 2 加载工况
Table 2. Loading conditions
加载频率/Hz 列车速度/(km·h−1) 6 162 7 189 9 243 11 297 13 351 -
[1] 宋强, 张鹏, 鲍玖文, 等. 泡沫混凝土的研究进展与应用[J]. 硅酸盐学报, 2021, 49(2): 398-410.SONG Qiang, ZHANG Peng, BAO Jiuwen, et al. Research progress and application of foam concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(2): 398-410. [2] KUNHANANDAN NAMBIAR E K, RAMAMURTHY K. Air-void characterisation of foam concrete[J]. Cement and Concrete Research, 2007, 37(2): 221-230. doi: 10.1016/j.cemconres.2006.10.009 [3] OTHMAN R, JAYA R P, MUTHUSAMY K, et al. Relation between density and compressive strength of foamed concrete[J]. Materials, 2021, 14(11): 2967.1-2967.18. [4] 袁璞, 马芹永, 张海东. 轻质泡沫混凝土SHPB试验与分析[J]. 振动与冲击, 2014, 33(17): 116-119.YUAN Pu, MA Qinyong, ZHANG Haidong. SHPB tests for light weight foam concrete[J]. Journal of Vibration and Shock, 2014, 33(17): 116-119. [5] 黄海健, 宫能平, 穆朝民, 等. 泡沫混凝土动态力学性能及本构关系[J]. 建筑材料学报, 2020, 23(2): 466-472.HUANG Haijian, GONG Nengping, MU Chaomin, et al. Dynamic mechanical properties and constitutive relation of foam concrete[J]. Journal of Building Materials, 2020, 23(2): 466-472. [6] 王建国, 高全臣, 陆华, 等. 分层介质冲击响应的SHPB实验研究[J]. 振动与冲击, 2015, 34(19): 192-197, 212.WANG Jianguo, GAO Quanchen, LU Hua, et al. Impact response tests of layered medium with SHPB[J]. Journal of Vibration and Shock, 2015, 34(19): 192-197, 212. [7] 吴海刚, 王宝军, 郑永红, 等. 大规模采用泡沫轻质土处理软基设计方法探讨[J]. 铁道工程学报, 2016, 33(2): 28-33. doi: 10.3969/j.issn.1006-2106.2016.02.007WU Haigang, WANG Baojun, ZHENG Yonghong, et al. Research on the design method of the large-scale foam light soil for soft ground treatments[J]. Journal of Railway Engineering Society, 2016, 33(2): 28-33. doi: 10.3969/j.issn.1006-2106.2016.02.007 [8] SHI X N, HUANG J J, SU Q. Experimental and numerical analyses of lightweight foamed concrete as filler for widening embankment[J]. Construction and Building Materials, 2020, 250: 118897.1-118897.15. [9] 许江波, 王元直, 骆永震, 等. 加筋泡沫轻质土三轴剪切力学特性[J]. 交通运输工程学报, 2020, 20(4): 120-133.XU Jiangbo, WANG Yuanzhi, LUO Yongzhen, et al. Triaxial shear mechanical properties of reinforced foam lightweight soil[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 120-133. [10] 周中, 李繁, 鲁四平. 轻质土换填路堤地基侧向变形非线性算法研究[J]. 铁道工程学报, 2022, 39(11): 12-18. doi: 10.3969/j.issn.1006-2106.2022.11.003ZHOU Zhong, LI Fan, LU Siping. Research on the nonlinear algorithm for lateral deformation of foundation under lightweight soil replacement embankment[J]. Journal of Railway Engineering Society, 2022, 39(11): 12-18. doi: 10.3969/j.issn.1006-2106.2022.11.003 [11] HUANG J J, WANG X Y, FAN R W, et al. Full-scale model testing of a graded crushed stone sandwich structure within the ballastless track subgrade[J]. International Journal of Rail Transportation, 2024, 12(4): 626-647. doi: 10.1080/23248378.2023.2208584 [12] SYCHOVA A, SYCHOV M, RUSANOVA E. A method of obtaining geonoiseprotective foam concrete for use on railway transport[J]. Procedia Engineering, 2017, 189: 681-687. doi: 10.1016/j.proeng.2017.05.108 [13] 刘彬彬, 曾志姣, 杨晨, 等. 公路下穿既有线新建泡沫轻质土路涵过渡段动力响应特性分析[J]. 铁道科学与工程学报, 2022, 19(6): 1577-1584.LIU Binbin, ZENG Zhijiao, YANG Chen, et al. Analysis of dynamic response characteristics of road subgrade-culvert transition section newly constructed with foamed lightweight soil under-crossing existing railway line[J]. Journal of Railway Science and Engineering, 2022, 19(6): 1577-1584. [14] 周平, 王志杰, 张家瑞, 等. 高速铁路新型路基材料的动响应减振研究[J]. 振动与冲击, 2017, 36(13): 230-237.ZHOU Ping, WANG Zhijie, ZHANG Jiarui, et al. Vibration reduction effects of new-type roadbed material of high-speed railway[J]. Journal of Vibration and Shock, 2017, 36(13): 230-237. [15] 赵文辉, 苏谦, 李婷, 等. 高速铁路基床底层泡沫轻质土填料试验研究[J]. 振动与冲击, 2019, 38(6): 179-186.ZHAO Wenhui, SU Qian, LI Ting, et al. Experimental study on foamed concrete as a filler of the bottom layer of high speed railway subgrade[J]. Journal of Vibration and Shock, 2019, 38(6): 179-186. [16] 梅利芳, 徐光黎. 纤维聚苯乙烯泡沫颗粒轻质土的制备及力学性能[J]. 复合材料学报, 2016, 33(10): 2355-2362.MEI Lifang, XU Guangli. Preparation and mechanical properties of fiber expanded polystyrene particle lightweight soil[J]. Acta Materiae Compositae Sinica, 2016, 33(10): 2355-2362. [17] 许江波, 王元直, 祁玉, 等. 循环加卸载下纤维增强泡沫轻质土变形特性[J]. 浙江大学学报(工学版), 2022, 56(1): 111-117. doi: 10.3785/j.issn.1008-973X.2022.01.012XU Jiangbo, WANG Yuanzhi, QI Yu, et al. Deformation characteristics of fiber-reinforced foam lightweight soil under cyclic loading and unloading[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(1): 111-117. doi: 10.3785/j.issn.1008-973X.2022.01.012 [18] 陈成华, 黄志超, 黄俊杰, 等. 纤维丝和网加筋泡沫轻质土力学特性和抗冻性[J]. 西南交通大学学报, 2023, 58(2): 462-469.CHEN Chenghua, HUANG Zhichao, HUANG Junjie, et al. Mechanical property and frost resistance analysis of foamed lightweight soil with fiber filament and mesh reinforcement[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 462-469. [19] 刘曙光, 张泽丰, 肖俊杰, 等. 玄武岩纤维加筋泡沫轻质土物理力学特性[J]. 公路工程, 2023, 48(4): 134-138, 166.LIU Shuguang, ZHANG Zefeng, XIAO Junjie, et al. Physical and mechanical properties of basalt fiber reinforced foam lightweight soil[J]. Highway Engineering, 2023, 48(4): 134-138, 166. [20] 裘友强, 李永良, 刘耀富, 等. 泡沫轻质土的微观结构及其强度特性研究[J]. 中外公路, 2019, 39(1): 215-217.QIU Youqiang, LI Yongliang, LIU Yaofu, et al. Study on microstructure and strength characteristics of foamed lightweight soil[J]. Journal of China & Foreign Highway, 2019, 39(1): 215-217. [21] 邢磊. 玄武岩纤维产业的发展综述[J]. 化学工业, 2020, 38(2): 34-42. doi: 10.3969/j.issn.1673-9647.2020.02.006XING Lei. A review of basalt fiber industry[J]. Chemical Industry, 2020, 38(2): 34-42. doi: 10.3969/j.issn.1673-9647.2020.02.006 [22] 许江波, 王元直, 晏长根, 等. 纤维加强作用对泡沫轻质土设计性能改善研究[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(3): 399-404.XU Jiangbo, WANG Yuanzhi, YAN Changgen, et al. Study on the improvement of foamed lightweight soil design performance by fiber reinforcement[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2020, 44(3): 399-404. [23] 蒋红光, 边学成, 徐翔, 等. 列车移动荷载下高速铁路板式轨道路基动力性态的全比尺物理模型试验[J]. 岩土工程学报, 2014, 36(2): 354-362. doi: 10.11779/CJGE201402013JIANG Hongguang, BIAN Xuecheng, XU Xiang, et al. Full-scale model tests on dynamic performances of ballastless high-speed railways under moving train loads[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 354-362. doi: 10.11779/CJGE201402013 [24] 尹双增. 断裂、损伤理论及应用[M]. 北京: 清华大学出版社, 1992: 1-6. [25] 雷晓燕. 高速铁路轨道动力学: 模型、算法与应用[M]. 北京: 科学出版社, 2015: 144-149. [26] 张迅, 王曦阳, 刘蕊, 等. U肋加劲板的声振特性研究[J]. 中国公路学报, 2020, 33(7): 76-85. doi: 10.3969/j.issn.1001-7372.2020.07.008ZHANG Xun, WANG Xiyang, LIU Rui, et al. Vibro-acoustic characteristics of U-rib stiffened slabs[J]. China Journal of Highway and Transport, 2020, 33(7): 76-85. doi: 10.3969/j.issn.1001-7372.2020.07.008 [27] 詹永祥, 蒋关鲁. 无碴轨道路基基床动力特性的研究[J]. 岩土力学, 2010, 31(2): 392-396. doi: 10.3969/j.issn.1000-7598.2010.02.011ZHAN Yongxiang, JIANG Guanlu. Study of dynamic characteristics of soil subgrade bed for ballastless track[J]. Rock and Soil Mechanics, 2010, 31(2): 392-396. doi: 10.3969/j.issn.1000-7598.2010.02.011 [28] 屈畅姿, 王永和, 魏丽敏, 等. 武广高速铁路路基振动现场测试与分析[J]. 岩土力学, 2012, 33(5): 1451-1456, 1461. doi: 10.3969/j.issn.1000-7598.2012.05.027QU Changzi, WANG Yonghe, WEI Limin, et al. In-situ test and analysis of vibration of subgrade for Wuhan-Guangzhou high-speed railway[J]. Rock and Soil Mechanics, 2012, 33(5): 1451-1456, 1461. doi: 10.3969/j.issn.1000-7598.2012.05.027 [29] 雷晓燕, 邢聪聪, 吴神花. 轨道结构中高频振动特性分析[J]. 振动工程学报, 2020, 33(6): 1245-1252.LEI Xiaoyan, XING Congcong, WU Shenhua. Mid-and high-frequency vibration characteristics of track structures[J]. Journal of Vibration Engineering, 2020, 33(6): 1245-1252. -
下载: