• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

车轮非圆化信号平滑处理方法及对多边形磨耗预测的影响

杨晓璇 陶功权 温泽峰

杨晓璇, 陶功权, 温泽峰. 车轮非圆化信号平滑处理方法及对多边形磨耗预测的影响[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240134
引用本文: 杨晓璇, 陶功权, 温泽峰. 车轮非圆化信号平滑处理方法及对多边形磨耗预测的影响[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240134
YANG Xiaoxuan, TAO Gongquan, WEN Zefeng. Smoothing Methods of Wheel Out-of-Roundness Signals and Their Effects on Polygonal Wear Prediction[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240134
Citation: YANG Xiaoxuan, TAO Gongquan, WEN Zefeng. Smoothing Methods of Wheel Out-of-Roundness Signals and Their Effects on Polygonal Wear Prediction[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240134

车轮非圆化信号平滑处理方法及对多边形磨耗预测的影响

doi: 10.3969/j.issn.0258-2724.20240134
基金项目: 国家自然科学基金项目(52002342,U21A20167);中国博士后科学基金面上项目(2020M673281)
详细信息
    作者简介:

    杨晓璇(1992—),男,博士研究生,研究方向为轮轨关系,E-mail:xxyang@my.swjtu.edu.cn

    通讯作者:

    陶功权(1989—),男,副研究员,博士,研究方向为轮轨关系、轮轨短波不平顺识别与监测,E-mail: taogongquan@swjtu.edu.cn

  • 中图分类号: U211

Smoothing Methods of Wheel Out-of-Roundness Signals and Their Effects on Polygonal Wear Prediction

  • 摘要:

    车轮踏面通常存在麻坑等缺陷,实测车轮非圆化信号往往包含高频噪声干扰,有时也会因为客观因素致使信号首尾端点不闭合. 车轮非圆化是车辆-轨道耦合动力学模型中重要的轮轨界面激扰,对轮轨动力相互作用仿真和车轮非圆化磨耗预测具有重要影响,选取合适的平滑方法是保证仿真结果准确性的关键. 本文对基于EN 15610标准、傅里叶级数、移动平均和形态学滤波等4种常用方法在实测车轮非圆化信号处理中的平滑效果展开研究,并讨论4种方法在车轮多边形磨耗预测中的适用性. 结果表明:在处理实测非圆化信号时,傅里叶级数和移动平均2种方法能够在保留原始信号的波形特征下达到良好的平滑去噪效果并保证车轮不圆数据首尾闭合;此外,2种方法也适合在多边形磨耗预测中使用,使用时建议傅里叶级数的阶数取值大于60,移动平均的平滑窗口长度取17 mm左右.

     

  • 图 1  以极坐标表示的实测车轮不圆

    Figure 1.  Measured OOR in polar coordinates

    图 2  不同平滑方法的统一指标

    Figure 2.  Unified indexes for different smoothing methods

    图 3  不同方法平滑后的车轮不圆

    Figure 3.  Wheel OOR smoothed by different methods

    图 4  不同方法平滑后的三分之一倍频程波长

    Figure 4.  One-third octave wavelength after smoothing with different methods

    图 5  车轮多边形磨耗预测一般流程

    Figure 5.  General process for wheel polygonal wear prediction

    图 6  车辆−轨道耦合动力学模型

    Figure 6.  Vehicle–track coupled dynamics model

    图 7  轮轨法向力结果

    Figure 7.  Wheel-rail normal force

    图 8  不平滑磨耗下的车轮多边形预测结果

    Figure 8.  Wheel polygon prediction results in unsmoothed wear conditions

    图 9  傅里叶级数平滑方法中采用不同k值的最终车轮多边形粗糙度水平

    Figure 9.  Final wheel polygonal roughness levels using different k values in Fourier series smoothing method

    图 10  移动平均平滑方法中采用不同窗口长度N的最终车轮多边形磨耗预测结果

    Figure 10.  Final wheel polygonal wear prediction results using different window lengths N in moving average smoothing method

    图 11  移动平均和傅里叶级数2种平滑方法的最终车轮多边形磨耗预测结果对比

    Figure 11.  Comparison of final wheel polygonal wear prediction results using moving average and Fourier series methods

    图 12  4种平滑方法的最终车轮多边形磨耗预测结果对比

    Figure 12.  Comparison of final wheel polygonal wear prediction results of four smoothing methods

    图 13  2种平滑更新策略对多边形磨耗预测的影响

    Figure 13.  Effects of two smoothing update strategies on polygonal wear prediction

    表  1  4种平滑方法处理结果的评价指标

    Table  1.   Evaluation indexes of processing results of four smoothing methods

    方法 均方根误差 信噪比 平滑度 互相关系数
    标准EN 15610 2.25 21.09 0.20 0.99
    傅里叶级数 2.42 20.48 0.03 0.99
    移动平均 2.48 20.25 0.03 0.99
    形态学滤波 2.47 20.29 0.03 0.99
    下载: 导出CSV

    表  2  车辆−轨道耦合动力学模型主要参数

    Table  2.   Main parameters of vehicle-track coupled dynamics model

    数值 参数
    39.106 车体质量/t
    2.495 构架质量/t
    1.560 轮对质量/t
    13.700 转臂节点纵向刚度/(MN•m−1
    1.182 一系钢簧垂向刚度/(MN•m−1
    0.240 二系悬挂垂向刚度/(MN•m−1
    0.46 车轮半径/m
    8.9 车辆定距/m
    2.5 轴距/m
    40 扣件垂向刚度/MN•m−1
    0.63 轨枕间距/m
    下载: 导出CSV
  • [1] TAO G Q, WEN Z F, JIN X S, et al. Polygonisation of railway wheels: a critical review[J]. Railway Engineering Science, 2020, 28(4): 317-345. doi: 10.1007/s40534-020-00222-x
    [2] TAO G Q, LIU M Q, XIE Q L, et al. Wheel–rail dynamic interaction caused by wheel out-of-roundness and its transmission between wheelsets[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2022, 236(3): 247-261. doi: 10.1177/09544097211016582
    [3] 郭欣茹, 杨云帆, 王超, 等. 制动工况下多边形车轮对轮轨动态相互作用影响研究[J]. 机械工程学报, 2023, 59(8): 196-203. doi: 10.3901/JME.2023.08.196

    GUO Xinru, YANG Yunfan, WANG Chao, et al. Influence of wheel/rail dynamic interaction induced by polygonal wheels under braking condition[J]. Journal of Mechanical Engineering, 2023, 59(8): 196-203. doi: 10.3901/JME.2023.08.196
    [4] 吴越, 韩健, 刘佳, 等. 高速列车车轮多边形磨耗对轮轨力和转向架振动行为的影响[J]. 机械工程学报, 2018, 54(4): 37-46. doi: 10.3901/JME.2018.04.037

    WU Yue, HAN Jian, LIU Jia, et al. Effect of high-speed train polygonal wheels on wheel/rail contact force and bogie vibration[J]. Journal of Mechanical Engineering, 2018, 54(4): 37-46. doi: 10.3901/JME.2018.04.037
    [5] 韩光旭, 张捷, 肖新标, 等. 高速动车组车内异常振动噪声特性与车轮非圆化关系研究[J]. 机械工程学报, 2014, 50(22): 113-121. doi: 10.3901/JME.2014.22.113

    HAN Guangxu, ZHANG Jie, XIAO Xinbiao, et al. Study on high-speed train abnormal interior vibration and noise related to wheel roughness[J]. Journal of Mechanical Engineering, 2014, 50(22): 113-121. doi: 10.3901/JME.2014.22.113
    [6] XIE C X, TAO G Q, LIANG S L, et al. Understanding and treatment of brake pipe fracture of metro vehicle bogie[J]. Engineering Failure Analysis, 2021, 128: 105614. doi: 10.1016/j.engfailanal.2021.105614
    [7] ZHANG H J, YANG X X, XIE C X, et al. Experimental investigation of effect of wheel out-of-roundness on fracture of coil springs in metro vehicles[J]. Engineering Failure Analysis, 2022, 142: 106811. doi: 10.1016/j.engfailanal.2022.106811
    [8] 金学松, 吴越, 梁树林, 等. 车轮非圆化磨耗问题研究进展[J]. 西南交通大学学报, 2018, 53(1): 1-14. doi: 10.3969/j.issn.0258-2724.2018.01.001

    JIN Xuesong, WU Yue, LIANG Shulin, et al. Mechanisms and countermeasures of out-of-roundness wear on railway vehicle wheels[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 1-14. doi: 10.3969/j.issn.0258-2724.2018.01.001
    [9] 陶功权, 温泽峰, 金学松. 铁道车辆车轮非圆化磨耗形成机理及控制措施研究进展[J]. 机械工程学报, 2021, 57(6): 106-120. doi: 10.3901/JME.2021.06.106

    TAO Gongquan, WEN Zefeng, JIN Xuesong. Advances in formation mechanism and mitigation measures of out-of-round railway vehicle wheels[J]. Journal of Mechanical Engineering, 2021, 57(6): 106-120. doi: 10.3901/JME.2021.06.106
    [10] 施以旋, 戴焕云, 毛庆洲, 等. 基于车轨耦合的地铁车轮多边形形成机理研究[J]. 西南交通大学学报, 2024, 59(6): 1357-1367, 1388.

    SHI Yixuan, DAI Huanyun, MAO Qingzhou, et al. Study on formation mechanism of metro wheel polygonal based on vehicle-track coupling[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1357-1367, 1388.
    [11] 胡晓依, 成棣, 孟凡迪, 等. 时速400公里高速铁路轮轨周期性短波不平顺的安全限值研究[J]. 西南交通大学学报, 2025, 60(6): 1581-1592.

    HU Xiaoyi, CHENG Di, MENG Fandi, et al. Safety limit for periodic short-wave irregularity of wheel and rail for high-speed railways at 400 km/h[J]. Journal of Southwest Jiaotong University, 2025, 60(6): 1581-1592.
    [12] 吴越, 韩健, 左齐宇, 等. 钢轨波磨对高速列车车轮多边形磨耗产生与发展的影响[J]. 机械工程学报, 2020, 56(17): 198-208. doi: 10.3901/JME.2020.17.198

    WU Yue, HAN Jian, ZUO Qiyu, et al. Effect of rail corrugation on initiation and development of polygonal wear on high-speed train wheels[J]. Journal of Mechanical Engineering, 2020, 56(17): 198-208. doi: 10.3901/JME.2020.17.198
    [13] European Committee for Standardization. Railway applications-acoustics-rail and wheel roughness measurement related to noise generation: EN 15610: 2019[S]. Brussels: CEN-CENELEC Management Centre, 2019.
    [14] 陶功权, 谢清林, 刘晓龙, 等. 形态学滤波方法在车轮非圆化信号降噪中的应用[J]. 机械工程学报, 2020, 56(18): 116-122. doi: 10.3901/JME.2020.18.116

    TAO Gongquan, XIE Qinglin, LIU Xiaolong, et al. Application of morphology filtering method in the de-nosing of wheel out-of-roundness signals[J]. Journal of Mechanical Engineering, 2020, 56(18): 116-122. doi: 10.3901/JME.2020.18.116
    [15] FU B, BRUNI S, LUO S H. Study on wheel polygonization of a metro vehicle based on polygonal wear simulation[J]. Wear, 2019, 438: 203071.
    [16] YE Y G, SHI D C, KRAUSE P, et al. Wheel flat can cause or exacerbate wheel polygonization[J]. Vehicle System Dynamics, 2020, 58(10): 1575-1604. doi: 10.1080/00423114.2019.1636098
    [17] YANG X X, TAO G Q, LI W, et al. On the formation mechanism of high-order polygonal wear of metro train wheels: experiment and simulation[J]. Engineering Failure Analysis, 2021, 127: 105512. doi: 10.1016/j.engfailanal.2021.105512
    [18] LI Y F, LIANG X H, LIU W W, et al. Development of a morphological convolution operator for bearing fault detection[J]. Journal of Sound and Vibration, 2018, 421: 220-233. doi: 10.1016/j.jsv.2018.02.014
    [19] 陶珂, 朱建军. 小波去噪质量评价方法的对比研究[J]. 大地测量与地球动力学, 2012, 32(2): 128-133. doi: 10.3969/j.issn.1671-5942.2012.02.029

    TAO Ke, ZHU Jianjun. A comparative study on validity assessment of wavelet de-noising[J]. Journal of Geodesy and Geodynamics, 2012, 32(2): 128-133. doi: 10.3969/j.issn.1671-5942.2012.02.029
    [20] 谢清林, 陶功权, 刘孟奇, 等. 数学形态学滤波在钢轨波磨波长识别中的应用[J]. 中南大学学报(自然科学版), 2021, 52(5): 1724-1732.

    XIE Qinglin, TAO Gongquan, LIU Mengqi, et al. Application of mathematical morphology filter in recognition of rail corrugation wavelength[J]. Journal of Central South University (Science and Technology), 2021, 52(5): 1724-1732.
    [21] 翟婉明. 车辆−轨道耦合动力学(下册)[M]. 4版. 北京: 科学出版社, 2015.
    [22] KALKER J J. A fast algorithm for the simplified theory of rolling contact[J]. Vehicle System Dynamics, 1982, 11(1): 1-13. doi: 10.1080/00423118208968684
    [23] BRAGHIN F, LEWIS R, DWYER-JOYCE R S, et al. A mathematical model to predict railway wheel profile evolution due to wear[J]. Wear, 2006, 261(11/12): 1253-1264.
    [24] CAI W B, CHI M R, WU X W, et al. Experimental and numerical analysis of the polygonal wear of high-speed trains[J]. Wear, 2019, 440: 203079.
    [25] 王鹏, 陶功权, 杨晓璇, 等. 中国高速列车车轮多边形磨耗特征分析[J]. 西南交通大学学报, 2023, 58(6): 1357-1365. doi: 10.3969/j.issn.0258-2724.20210777

    WANG Peng, TAO Gongquan, YANG Xiaoxuan, et al. Analysis of polygonal wear characteristics of Chinese high-speed train wheels[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1357-1365. doi: 10.3969/j.issn.0258-2724.20210777
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  22
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-19
  • 修回日期:  2024-06-09
  • 网络出版日期:  2025-12-31

目录

    /

    返回文章
    返回