• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于频谱重构的经验傅里叶分解算法及轴承故障诊断应用

杨岗 邓琴 徐五一 成雷

杨岗, 邓琴, 徐五一, 成雷. 基于频谱重构的经验傅里叶分解算法及轴承故障诊断应用[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240050
引用本文: 杨岗, 邓琴, 徐五一, 成雷. 基于频谱重构的经验傅里叶分解算法及轴承故障诊断应用[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240050
YANG Gang, DENG Qin, XU Wuyi, CHENG Lei. Empirical Fourier Decomposition Algorithm Based on Spectrum Reconstruction and Its Application in Bearing Fault Diagnosis[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240050
Citation: YANG Gang, DENG Qin, XU Wuyi, CHENG Lei. Empirical Fourier Decomposition Algorithm Based on Spectrum Reconstruction and Its Application in Bearing Fault Diagnosis[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240050

基于频谱重构的经验傅里叶分解算法及轴承故障诊断应用

doi: 10.3969/j.issn.0258-2724.20240050
基金项目: 国家重点研发计划(2020YFB1200300ZL);四川省重大科技专项项目(2023ZDZX0011)
详细信息
    通讯作者:

    杨岗(1973—),男,讲师,博士,硕士研究生导师,研究方向为轴承故障诊断、人工智能与大数据分析、弓网动力学与主动控制,E-mail:yanggang@swjtu.cn

  • 中图分类号: TH212;TH213.3

Empirical Fourier Decomposition Algorithm Based on Spectrum Reconstruction and Its Application in Bearing Fault Diagnosis

  • 摘要:

    为解决经验傅里叶分解(EFD)方法处理轴承故障信号时易于发生频谱分割边界集中在局部窄带的问题,通过统计排序滤波器(OSF)简化采集的轴承振动信号的频谱,进行平均滑移处理和预分割;针对可能存在的过度分解问题,提出根据频域平方基尼指数(FDSGI)的边界融合算法,实现自适应地确定分割边界和分解模式数;并利用包络谱谐波显著度(ESHS)指标选择最佳分量,进而通过对最佳分量进行包络谱分析,达到轴承故障诊断目标. 轴承故障仿真信号和试验信号的对比试验证明了SREFD在频谱分割精确度方面优于EFD和经验小波变换(EWT),处理后的信号中能够更清晰地观察到轴承故障特征频率及其倍频,证明了所提方法的有效性和鲁棒性.

     

  • 图 1  OSF包络及平滑处理结果

    Figure 1.  OSF envelope and smoothing results

    图 2  边界融合策略流程图

    Figure 2.  Boundary fusion strategy flowchart

    图 3  基于SREFD的轴承故障诊断算法流程图

    Figure 3.  Flowchart of SREFD-based bearing fault diagnosis algorithm

    图 4  $s(t)$及其分量的时域及其频域波形图

    Figure 4.  Waveforms of $s(t)$ and its components in the time and frequency domains

    图 5  SREFD、EWT与EFD频谱分割结果与分解分量

    Figure 5.  Spectral segmentation results of SREFD, EWT, and EFD and their decomposition components

    图 6  轴承故障仿真信号成分时域波形图

    Figure 6.  Time-domain waveform of signal components for bearing fault simulation

    图 7  轴承外圈故障仿真信号

    Figure 7.  Bearing outer ring simulation signal

    图 8  SREFD方法分解结果

    Figure 8.  Decomposition results of the SREFD method

    图 9  EWT与EFD分解结果图

    Figure 9.  Decomposition results of the EWT and EFD methods

    图 10  轴承振动信号采集试验台

    Figure 10.  Bearing vibration signal acquisition test bench

    图 11  台架试验轴承故障信号

    Figure 11.  Bearing fault signal in bench test

    图 12  SREFD、EWT和EFD对轴承外圈故障信号的分解效果图

    Figure 12.  Decomposition effects of SREFD, EWT, and EFD for bearing outer ring fault signals

    图 13  SREFD、EWT和EFD对轴承内圈故障信号的分解效果图

    Figure 13.  Decomposition effects of SREFD, EWT, and EFD for bearing inner ring fault signals

    图 14  SREFD、EWT和EFD对轴承滚动体故障信号的分解效果

    Figure 14.  Decomposition effects of SREFD, EWT, and EFD for bearing ball fault signals

    表  1  轴承外圈故障信号仿真参数

    Table  1.   Simulation parameters of bearing outer ring fault signal

    参数 取值 参数 取值 参数 取值
    ${M_1}$ 50 ${M_2}$ 1 ${M_3}$ 2
    ${T_{\mathrm{a}}}$ 1/75 ${T_{{s}}}$ $ \begin{array}{*{20}{c}} {U(1\;000,} \\ {9\;000)} \end{array} $ $ {C_1} $ 0.025
    $ A(t) $ 1 ${B_s}$ $ N(3.5,1) $ $ {C_2} $ 0.025
    $ {f_{\mathrm{a}}} $ 3500 ${f_{\mathrm{d}}}$ 1500 ${f_1}$ 10
    $ {\varphi _{\mathrm{a}}} $ 0 ${\varphi _{\mathrm{d}}}$ 0 $ {f_2} $ 20
    $ {\xi _{\mathrm{a}}} $ 600 ${\xi _{\mathrm{d}}}$ 400 $ {\theta _1} $ $ {\text{π}} /6 $
    ${\delta _{\mathrm{l}}}$ $ \begin{array}{*{20}{c}} {U( - 0.02{T_{\text{α}} },} \\ {0.02{T_{\text{α}} })} \end{array} $ $ {\theta _2} $ $ - {\text{π}} /3 $
    下载: 导出CSV

    表  2  SREFD、EWT和EDF的各分解分量所对应的ESHS值

    Table  2.   ESHS values corresponding to each decomposition component of SREFD, EWT, and EDF

    分量 SREFD EWT EDF
    1 0.0072 0.0049 0.0077
    2 0.0117 0.0018 0.0049
    3 0.0087 0.0007 0.0083
    4 0.0148 0.0034 0.0012
    5 0.0122 0.0009 0.0024
    6 0.0156 0.0098 0.0019
    7 0.0030 0.0063 0.0110
    下载: 导出CSV
  • [1] LIU R N, YANG B Y, ZIO E, et al. Artificial intelligence for fault diagnosis of rotating machinery: a review[J]. Mechanical Systems and Signal Processing, 2018, 108: 33-47. doi: 10.1016/j.ymssp.2018.02.016
    [2] ZHAO Y J, QIN B F, ZHOU Y H, et al. Bearing fault diagnosis based on inverted Mel-scale frequency cepstral coefficients and deformable convolution networks[J]. Measurement Science and Technology, 2023, 34(5): 055404. doi: 10.1088/1361-6501/acb0ea
    [3] ZHANG R X, GU Y. A transfer learning framework with a one-dimensional deep subdomain adaptation network for bearing fault diagnosis under different working conditions[J]. Sensors, 2022, 22(4): 1624. doi: 10.3390/s22041624
    [4] 杨岗, 徐五一, 邓琴, 等. 基于复合基尼指数和最大相关峭度特征模态分解的轴承故障诊断算法[J]. 机车电传动, 2023(4): 9-17.

    YANG Gang, XU Wuyi, DENG Qin, et al. Bearing fault diagnosis algorithm based on maximum correlated kurtosis feature mode decomposition and compound Gini index[J]. Electric Drive for Locomotives, 2023(4): 9-17.
    [5] HU Y, LI F C, LI H G, et al. An enhanced empirical wavelet transform for noisy and non-stationary signal processing[J]. Digital Signal Processing, 2017, 60: 220-229. doi: 10.1016/j.dsp.2016.09.012
    [6] 程尧, 陈丙炎, 张卫华, 等. 基于加权联合提升包络谱的轴箱轴承故障诊断[J]. 西南交通大学学报, 2024, 59(1): 142-150.

    CHENG Yao, CHEN Bingyan, ZHANG Weihua, et al. Fault diagnosis of axle-box bearing based on weighted combined improved envelope spectrum[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 142-150.
    [7] 易彩, 林建辉, 汪浩, 等. VMD引导的轮对与轴承复合故障诊断方法[J]. 西南交通大学学报, 2024, 59(1): 151-159.

    YI Cai, LIN Jianhui, WANG Hao, et al. Compound fault diagnosis method guided by variational mode decomposition for wheelsets and bearings[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 151-159.
    [8] 陈丙炎, 谷丰收, 张卫华, 等. 基于多带加权包络谱的轴箱轴承故障诊断[J]. 西南交通大学学报, 2024, 59(1): 201-210.

    CHEN Bingyan, GU Fengshou, ZHANG Weihua, et al. Axle-box bearing fault diagnosis based on multiband weighted envelope spectrum[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 201-210.
    [9] QIN L M, YANG G, LV K, et al. An adaptive generalized logarithm sparse regularization method and its application in rolling bearing fault diagnosis[J]. Measurement Science and Technology, 2023, 34(3): 035118. doi: 10.1088/1361-6501/acaa4c
    [10] WANG B X, LIAO Y H, DING C C, et al. Periodical sparse low-rank matrix estimation algorithm for fault detection of rolling bearings[J]. ISA Transactions, 2020, 101: 366-378. doi: 10.1016/j.isatra.2020.01.037
    [11] QIN L M, YANG G, SUN Q. Maximum correlation Pearson correlation coefficient deconvolution and its application in fault diagnosis of rolling bearings[J]. Measurement, 2022, 205: 112162. doi: 10.1016/j.measurement.2022.112162
    [12] CHEN B Y, ZHANG W H, SONG D L, et al. Blind deconvolution assisted with periodicity detection techniques and its application to bearing fault feature enhancement[J]. Measurement, 2020, 159: 107804. doi: 10.1016/j.measurement.2020.107804
    [13] CHEN Z Y, LI Z R, WU J, et al. Deep residual shrinkage relation network for anomaly detection of rotating machines[J]. Journal of Manufacturing Systems, 2022, 65: 579-590. doi: 10.1016/j.jmsy.2022.10.014
    [14] CHEN Z Y, WU J, DENG C, et al. Deep attention relation network: a zero-shot learning method for bearing fault diagnosis under unknown domains[J]. IEEE Transactions on Reliability, 2023, 72(1): 79-89. doi: 10.1109/TR.2022.3177930
    [15] CHEN Z Y, WANG X Q, WU J, et al. Relational conduction graph network for intelligent fault diagnosis of rotating machines under small fault samples[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3514511.
    [16] JIN Z Z, XIAO Y L, HE D Q, et al. Fault diagnosis of bearing based on refined piecewise composite multivariate multiscale fuzzy entropy[J]. Digital Signal Processing, 2023, 133: 103884. doi: 10.1016/j.dsp.2022.103884
    [17] ANTONI J. Fast computation of the kurtogram for the detection of transient faults[J]. Mechanical Systems and Signal Processing, 2007, 21(1): 108-124. doi: 10.1016/j.ymssp.2005.12.002
    [18] GILLES J. Empirical wavelet transform[J]. IEEE Transactions on Signal Processing, 2013, 61(16): 3999-4010. doi: 10.1109/TSP.2013.2265222
    [19] 冯博, 李辉, 郑海起. 基于经验小波变换的轴承故障诊断研究[J]. 轴承, 2015(12): 53-58.

    FENG Bo, LI Hui, ZHENG Haiqi. Study on fault diagnosis for bearings based on empirical wavelet transform[J]. Bearing, 2015(12): 53-58.
    [20] 盛嘉玖, 陈果, 康玉祥, 等. 一种用于滚动轴承故障诊断的改进EWT方法[J]. 航空动力学报, 2024, 39(9): 371-383.

    SHENG Jiajiu, CHEN Guo, KANG Yuxiang, et al. An improved EWT method for fault diagnosis of rolling bearings[J]. Journal of Aerospace Power, 2024, 39(9): 371-383.
    [21] GILLES J, TRAN G, OSHER S. 2D empirical transforms. wavelets, ridgelets, and curvelets revisited[J]. SIAM Journal on Imaging Sciences, 2014, 7(1): 157-186. doi: 10.1137/130923774
    [22] SINGH P, JOSHI S D, PATNEY R K, et al. The Fourier decomposition method for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473(2199): 20160871.
    [23] 黄斯琪, 郑近德, 潘海洋等. 最大相关峭度反褶积与傅里叶分解方法相结合的滚动轴承故障诊断[J]. 机械科学与技术, 2020, 39(8): 1163-1170.

    HUANG Siqi, ZHENG Kinde, PAN Ocean et al. Rolling bearing fault diagnosis of maximum correlation kurtosis deconvolution combining with fourier decomposition method[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(8): 1163-1170.
    [24] 张辉, 张超, 辛阔, 等. 基于FDM和TEO的滚动轴承故障诊断研究[J]. 机电工程, 2021, 38(7): 850-856.

    ZHANG Hui, ZHANG Chao, XIN Kuo, et al. Fault diagnosis of rolling bearing based on FDM and TEO[J]. Journal of Mechanical & Electrical Engineering, 2021, 38(7): 850-856.
    [25] ZHOU W, FENG Z R, XU Y F, et al. Empirical Fourier decomposition: an accurate signal decomposition method for nonlinear and non-stationary time series analysis[J]. Mechanical Systems and Signal Processing, 2022, 163: 108155. doi: 10.1016/j.ymssp.2021.108155
    [26] MO Z L, WANG J Y, ZHANG H, et al. Weighted cyclic harmonic-to-noise ratio for rolling element bearing fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 69(2): 432-442.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  22
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-31
  • 修回日期:  2025-06-15
  • 网络出版日期:  2025-12-02

目录

    /

    返回文章
    返回