• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

晶须增强高铁混凝土修补砂浆试验研究

李茂红 梁雷 郭秋叙 伏晓杰 黄群艺 张胜利 王平

李茂红, 梁雷, 郭秋叙, 伏晓杰, 黄群艺, 张胜利, 王平. 晶须增强高铁混凝土修补砂浆试验研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240037
引用本文: 李茂红, 梁雷, 郭秋叙, 伏晓杰, 黄群艺, 张胜利, 王平. 晶须增强高铁混凝土修补砂浆试验研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240037
LI Maohong, LIANG Lei, GUO Qiuxu, FU Xiaojie, HUANG Qunyi, ZHANG Shengli, WANG Ping. Whisker-Reinforced Repairing Mortar for High-Speed Railway Concrete[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240037
Citation: LI Maohong, LIANG Lei, GUO Qiuxu, FU Xiaojie, HUANG Qunyi, ZHANG Shengli, WANG Ping. Whisker-Reinforced Repairing Mortar for High-Speed Railway Concrete[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240037

晶须增强高铁混凝土修补砂浆试验研究

doi: 10.3969/j.issn.0258-2724.20240037
基金项目: 国家自然科学基金项目(51708458)
详细信息
    作者简介:

    李茂红(1977—),女,高级工程师,博士,研究方向为胶凝材料、混凝土外加剂及对应制品,E-mail:sclimaohong@swjtu.edu.cn

    通讯作者:

    张胜利(1976—),女,副教授,研究方向为功能材料,E-mail:zhang222@home.swjtu.edu.cn

  • 中图分类号: TU52;TU59

Whisker-Reinforced Repairing Mortar for High-Speed Railway Concrete

  • 摘要:

    为满足高铁混凝土修补砂浆性能需求,制备不同掺量硅灰石晶须硫铝酸盐水泥砂浆,测试其抗折强度、抗压强度和收缩率,并采用X-射线衍射仪(XRD)、扫描电子显微镜(SEM)进行表征观察. 研究结果表明:砂浆强度随硅灰石晶须掺量增加先增大后减小,在掺量为10.0%时,抗折强度、抗压强度均达到最大值,收缩率最小;掺量不大于10.0%时,砂浆强度提高,收缩率减小,主要归因于晶须拔出、断裂、桥接作用和晶须-水泥共同拔出,而受晶须对水泥水化反应影响较小;掺量过大,晶须发生团聚增大砂浆孔隙,反而导致强度降低;硫铝酸盐水泥砂浆掺入适量晶须,可改善修补砂浆多方面性能,具有用作高铁混凝土修补材料的潜质.

     

  • 图 1  硅灰石晶须SEM图

    Figure 1.  SEM Image of wollastonite whiskers

    图 2  不同硅灰石晶须掺量的铝酸盐水泥砂浆收缩率

    Figure 2.  Shrinkage of sulphoaluminate cement mortars with different wollastonite whisker contents

    图 3  不同硅灰石晶须掺量的铝酸盐水泥砂浆抗折强度

    Figure 3.  Flexural strength of sulphoaluminate cement mortars with different wollastonite whisker contents

    图 4  不同掺量硅灰石晶须硫铝酸盐水泥砂浆抗压强度

    Figure 4.  Compressive strength of sulphoaluminate cement mortars with different wollastonite whisker contents

    图 5  XRD图

    Figure 5.  XRD pattern

    图 6  不同硅灰石晶须掺量的硫铝酸盐水泥净浆各龄期下的XRD图谱及Ig/Is比值

    Figure 6.  XRD Patterns and Ig/Is ratios of sulfoaluminate cement pastes with different wollastonite whisker contents at various ages

    图 7  掺入硅灰石晶须的硫铝酸盐水泥砂浆横断面SEM图

    Figure 7.  SEM Images of cross-sections of sulfoaluminate cement mortar incorporating wollastonite whiskers

    图 8  晶须团聚图(2 000倍)

    Figure 8.  Whisker agglomeration (2 000 times)

    表  1  硫铝酸盐水泥基本性能

    Table  1.   Basic properties of sulphoaluminate cement

    安定性 凝结时间/min 抗折强度/MPa 抗压强度/MPa
    初凝 终凝 1 d 7 d 28 d 1 d 7 d 28 d
    良好 24 30 6.03 7.28 8.12 38.89 42.11 57.57
    下载: 导出CSV

    表  2  标准砂粒径分布

    Table  2.   Particle size distribution of standard sand

    筛孔边长/mm2.001.601.000.500.160.08
    累计筛余/%07±533±567±587±599±1
    下载: 导出CSV

    表  3  硅灰石晶须基本性能指标

    Table  3.   Basic performance indicators of wollastonite whiskers

    密度/(g·cm−3 长度/μm 宽度/μm 水溶/
    (g·100 mL−1
    膨胀系数
    0.34 480.8 24.2 0.0095 6.5 × 10−6
    下载: 导出CSV

    表  4  不同硅灰石晶须掺量的硫铝酸盐水泥砂浆配合比

    Table  4.   Mix proportions of sulphoaluminate cement mortars with different amounts of wollastonite whiskers g

    试样编号 水泥 标准砂 硅灰石晶须
    WFA0 211.5 450 1350.00 0
    WFA5.0 211.5 450 1327.50 22.50
    WFA7.5 211.5 450 1316.25 33.75
    WFA10.0 211.5 450 1305.00 45.00
    WFA12.5 211.5 450 1293.75 56.25
    WFA15.0 211.5 450 1282.50 67.50
    下载: 导出CSV
  • [1] 景璞, 李飞. CRTSⅡ型板式无砟轨道病害修补方案研究[J]. 铁道技术监督, 2017, 45(11): 22-29. doi: 10.3969/j.issn.1006-9178.2017.11.008

    JING Pu, LI Fei. Study on repair scheme of CRTSⅡ slab ballastless track disease[J]. Railway Quality Control, 2017, 45(11): 22-29. doi: 10.3969/j.issn.1006-9178.2017.11.008
    [2] 田卫东. 高速铁路CRTS Ⅱ型板式无砟轨道维修技术探索[J]. 铁道勘察, 2013, 39(3): 79-81. doi: 10.3969/j.issn.1672-7479.2013.03.026

    TIAN Weidong. Technological exploration of CRTS Ⅱ plate-type ballastless track maintenance in high speed railway[J]. Railway Investigation and Surveying, 2013, 39(3): 79-81. doi: 10.3969/j.issn.1672-7479.2013.03.026
    [3] 姜子清, 杜香刚, 刘伟斌, 等. 高速铁路无砟轨道挡肩及承轨槽伤损维修技术[J]. 铁道建筑, 2018, 58(9): 94-97. doi: 10.3969/j.issn.1003-1995.2018.09.24

    JIANG Ziqing, DU Xianggang, LIU Weibin, et al. Maintenance and repair technique for damages in shoulders and track bearing slots of high speed railway ballastless track[J]. Railway Engineering, 2018, 58(9): 94-97. doi: 10.3969/j.issn.1003-1995.2018.09.24
    [4] 胡华洁. 用于高铁无砟轨道损伤快速修复磷酸镁水泥研究[D]. 上海: 上海交通大学, 2015.
    [5] 张忠. 无砟轨道Ⅲ型板挡肩裂缝修复技术研究与应用[J]. 铁道建筑技术, 2014(6): 124-126. doi: 10.3969/j.issn.1009-4539.2014.06.032

    ZHANG Zhong. Research and application of crack patching technology for retaining shoulder of type HI ballastless track slab[J]. Railway Construction Technology, 2014(6): 124-126. doi: 10.3969/j.issn.1009-4539.2014.06.032
    [6] 沈燕, 张伟, 陈玺, 等. 硫铝酸盐水泥改性的研究进展[J]. 硅酸盐通报, 2019, 38(3): 683-687.

    SHEN Yan, ZHANG Wei, CHEN Xi, et al. Research progress of sulfoaluminate cement modification[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(3): 683-687.
    [7] 张广兴. 轨道修补用高性能硫铝酸盐基快速修补材料研究[J]. 中国测试, 2021, 47(5): 145-150, 161. doi: 10.11857/j.issn.1674-5124.2020120053

    ZHANG Guangxing. Research on high performance sulfoaluminate based rapid repair material for track repair[J]. China Measurement & Test, 2021, 47(5): 145-150, 161. doi: 10.11857/j.issn.1674-5124.2020120053
    [8] 中国国家铁路集团有限公司. 高速铁路混凝土结构用修补砂浆: Q-CR 659—2018[S]. 北京: 中国铁道出版社, 2018.
    [9] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 硫铝酸盐水泥: GB 20472—2006 [S]. 北京: 中国标准出版社, 2006.
    [10] WYDRA M, DOLNY P, SADOWSKI G, et al. Flexural behaviour of cementitious mortars with the addition of basalt fibres[J]. Materials, 2021, 14(6): 133.4-135.1. doi: 10.3390/ma14061334
    [11] 颜祥程, 翁兴中, 寇雅楠, 等. 纤维格栅增强水泥混凝土的弯曲力学特性[J]. 西南交通大学学报, 2012, 47(3): 394-399. doi: 10.3969/j.issn.0258-2724.2012.03.007

    YAN Xiangcheng, WENG Xingzhong, KOU Yanan, et al. Bending mechanical properties of cement concrete with fiber grid reinforcement[J]. Journal of Southwest Jiaotong University, 2012, 47(3): 394-399. doi: 10.3969/j.issn.0258-2724.2012.03.007
    [12] LIU Q, LIU R J, WANG Q, et al. Cement mortar with enhanced flexural strength and durability-related properties using in situ polymerized interpenetration network[J]. Frontiers of Structural and Civil Engineering, 2021, 15(1): 99-108. doi: 10.1007/s11709-021-0721-0
    [13] 魏小凡, 何牟, 段后红, 等. 矿物掺合料对硫铝酸盐水泥混凝土性能的影响[J]. 四川水泥, 2023(5): 8-10, 7.
    [14] MARTIN L H J, WINNEFELD F, TSCHOPP E, et al. Influence of fly ash on the hydration of calcium sulfoaluminate cement[J]. Cement and Concrete Research, 2017, 95: 152-163. doi: 10.1016/j.cemconres.2017.02.030
    [15] 王海龙, 罗月静, 彭光宇, 等. 掺合料对纤维增强水泥基材料拉伸性能的影响[J]. 西南交通大学学报, 2017, 52(1): 61-68. doi: 10.3969/j.issn.0258-2724.2017.01.009

    WANG Hailong, LUO Yuejing, PENG Guangyu, et al. Effect of admixtures on tensile behavior of fiber reinforced cementitious composites[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 61-68. doi: 10.3969/j.issn.0258-2724.2017.01.009
    [16] 马保国, 梅军鹏, 李海南, 等. 纳米SiO2对硫铝酸盐水泥水化硬化的影响[J]. 功能材料, 2016, 47(2): 2010-2014. doi: 10.3969/j.issn.1001-9731.2016.02.003

    MA Baoguo, MEI Junpeng, LI Hainan, et al. Effect of nano-SiO2 on hydration and hardening of sulphoaluminate cement[J]. Journal of Functional Materials, 2016, 47(2): 2010-2014. doi: 10.3969/j.issn.1001-9731.2016.02.003
    [17] 高为民. 硫铝酸盐水泥基修补砂浆制备与性能研究[D]. 济南: 济南大学, 2018.
    [18] SHI C, WANG P, MA C Y, et al. Effects of SAE and SBR on properties of rapid hardening repair mortar[J]. Journal of Building Engineering, 2021, 35: 102000. doi: 10.1016/j.jobe.2020.102000
    [19] LIAO Y S, JIANG G X, WANG K J, et al. Effect of steel slag on the hydration and strength development of calcium sulfoaluminate cement[J]. Construction and Building Materials, 2020, 265: 12030.1-12030.11. doi: 10.1016/j.conbuildmat.2020.120301
    [20] ZOU S, DANG L, LI Y W, et al. Inorganic-organic dual modification of magnesium borate whisker by magnesium hydrate and dodecyl dihydrogen phosphate and its effect on the fire safety and mechanical properties of epoxy resin[J]. Applied Surface Science, 2022, 589: 1530.64-1530.74. doi: 10.1016/j.apsusc.2022.153064
    [21] ZHANG B J, PENG Z G, ZOU C J, et al. Study on surface modification of CaSO4 whisker and mechanism of enhancing mechanical properties of oil-well cement[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 618: 1264.08-1264.19. doi: 10.1016/j.colsurfa.2021.126408
    [22] DE AZEVEDO N H, DE MATOS P R, GLEIZE P J P, et al. Effect of thermal treatment of SiC nanowhiskers on rheological, hydration, mechanical and microstructure properties of Portland cement pastes[J]. Cement and Concrete Composites, 2021, 117: 1039.03-1039.14. doi: 10.1016/j.cemconcomp.2020.103903
    [23] XIE C P, CAO M L, SI W, et al. Experimental evaluation on fiber distribution characteristics and mechanical properties of calcium carbonate whisker modified hybrid fibers reinforced cementitious composites[J]. Construction and Building Materials, 2020, 265: 120.292-120.312. doi: 10.1016/j.conbuildmat.2020.120292
    [24] CAO K, LIU G G, LI H, et al. Mechanical properties and microstructure of calcium sulfate whisker-reinforced cement-based composites[J]. Materials, 2022, 15(3): 9.47-9.57. doi: 10.3390/ma15030947
    [25] 温浩宇, 吴波, 高灵强, 等. 晶须增强PET复合材料的增韧改性研究[J]. 橡塑技术与装备, 2023, 49(7): 18-21.

    WEN Haoyu, WU Bo, GAO Lingqiang, et al. Study on toughening modification of whisker reinforced PET composite materials[J]. China Rubber/Plastics Technology and Equipment, 2023, 49(7): 18-21.
    [26] LI M, YANG Y J, LIU M, et al. Hybrid effect of calcium carbonate whisker and carbon fiber on the mechanical properties and microstructure of oil well cement[J]. Construction and Building Materials, 2015, 93: 995-1002. doi: 10.1016/j.conbuildmat.2015.05.056
    [27] 中国建筑材料科学研究总院有限公司, 厦门艾思欧标准砂有限公司, 安徽海螺水泥股份有限公司, 等. 水泥胶砂强度检验方法(ISO法): GB/T 17671—2021[S]. 北京: 中国出版社, 2021.
    [28] 陕西省建筑科学研究院, 山河建设集团有限公司, 福建省建筑科学研究院, 等. 建筑砂浆基本性能试验方法标准: JGJ/70—2009[S]. 北京: 中国建筑工业出版社, 2009.
    [29] 张绍康, 王茹, 徐玲琳, 等. 羟乙基甲基纤维素改性水泥砂浆的物理力学性能和孔隙率[J]. 材料导报, 2020, 34(增2): 1607-1611.

    ZHANG Shaokang, WANG Rui, XU Linglin, et al. Physical and mechanical properties and porosity of cement mortar modified by hydroxyethyl methyl cellulose[J]. Materials Reports., 2020, 34(S2): 1607-1611.
    [30] ZHANG S K, WANG R, XU L L, et al. Physical and mechanical properties and porosity of cement mortar modified by hydroxyethyl methyl cellulose[J]. Materials Reports, 2020, 34(S2): 1607-1611.
    [31] CAO M L, ZHANG C, LV H F, et al. Characterization of mechanical behavior and mechanism of calcium carbonate whisker-reinforced cement mortar[J]. Construction and Building Materials, 2014, 66: 89-97. doi: 10.1016/j.conbuildmat.2014.05.059
    [32] CAO M L, XU L, ZHANG C. Rheology, fiber distribution and mechanical properties of calcium carbonate (CaCO3) whisker reinforced cement mortar[J]. Composites Part A: Applied Science and Manufacturing, 2016, 90: 662-669. doi: 10.1016/j.compositesa.2016.08.033
    [33] 宋建建, 许明标, 周俊, 等. 针状硅灰石微粉改善固井水泥浆性能研究[J]. 硅酸盐通报, 2018, 37(8): 2656-2661.

    SONG Jianjian, XU Mingbiao, ZHOU Jun, et al. Needle-shape wollastonite powder improved the performance of cement slurry[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(8): 26.56-26.61.
    [34] ZYMAN Z, EPPLE M, GONCHARENKO A, et al. Favorable features of a calcium phosphate cement based on a metastable α-tricalcium phosphate and reinforced by hydroxyapatite whiskers[J]. Physica Scripta, 2023, 98(12): 125905-125915. doi: 10.1088/1402-4896/ad0696
    [35] HU Y Y, LI W F, MA S H, et al. Influence of borax and citric acid on the hydration of calcium sulfoaluminate cement[J]. Chemical Papers, 2017, 71(10): 1909-1919. doi: 10.1007/s11696-017-0185-9
    [36] LI M H, HONG Y X, YU H, et al. A novel high solar reflective coating based on potassium silicate for track slab in high-speed railway[J]. Construction and Building Materials, 2019, 225: 900-908. doi: 10.1016/j.conbuildmat.2019.07.223
    [37] CAO M L, ZHANG C, WEI J Q. Microscopic reinforcement for cement based composite materials[J]. Construction and Building Materials, 2013, 40: 14-25. doi: 10.1016/j.conbuildmat.2012.10.012
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  21
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-23
  • 修回日期:  2024-07-11
  • 网络出版日期:  2025-07-28

目录

    /

    返回文章
    返回