• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于元遗传算法的石拱桥传感器优化布置及评价方法

张承文 淳庆 花全均 林怡婕 崔哲魁

张承文, 淳庆, 花全均, 林怡婕, 崔哲魁. 基于元遗传算法的石拱桥传感器优化布置及评价方法[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240012
引用本文: 张承文, 淳庆, 花全均, 林怡婕, 崔哲魁. 基于元遗传算法的石拱桥传感器优化布置及评价方法[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240012
ZHANG Chengwen, CHUN Qing, HUA Quanjun, LIN Yijie, CUI Zhekui. Optimal Sensor Placement and Evaluation Method of Stone Arch Bridge Based on Meta-Genetic Algorithm[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240012
Citation: ZHANG Chengwen, CHUN Qing, HUA Quanjun, LIN Yijie, CUI Zhekui. Optimal Sensor Placement and Evaluation Method of Stone Arch Bridge Based on Meta-Genetic Algorithm[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240012

基于元遗传算法的石拱桥传感器优化布置及评价方法

doi: 10.3969/j.issn.0258-2724.20240012
基金项目: 国家重点研发计划(2023YFF0906100);江苏省自然科学基金(BK20241347)
详细信息
    作者简介:

    张承文(1996—),男,博士研究生,研究方向为建筑遗产保护,E-mail:zhang1chengwen@163.com

    通讯作者:

    淳庆(1979—),男,教授,博士,研究方向为建筑遗产保护,E-mail:cqnj1979@163.com

  • 中图分类号: TU363

Optimal Sensor Placement and Evaluation Method of Stone Arch Bridge Based on Meta-Genetic Algorithm

  • 摘要:

    为开发古代石拱桥传感器优化布置方法,本文以全国重点文物保护单位北京卢沟桥为例,建立考虑初始残损和材料参数随机的传感器优化计算模型;提出考虑复杂监测目标的适应度函数设计与求解方法、以元学习思想为基础的元遗传算法,对传感器优化布置问题进行搜优;并将提出方法与2种基于传统遗传算法的优化模式进行对比,实现了面向古代石拱桥的高效传感器优化布置. 研究结果表明:所提出方法具有更好的参数识别能力、损伤灵敏度与信息冗余水平;当噪声水平在5%以内时,元遗传算法给出的方案均可成功检测损伤,而另外2种方案的损伤检测成功率仅60.0%;当噪声水平达到10%时,元遗传算法给出方案可以检测出60.0%的损伤,而其他2种方案无法有效检测出损伤.

     

  • 图 1  元遗传算法框架

    Figure 1.  Meta-GA framework

    图 2  卢沟桥现场调研

    Figure 2.  On-site investigation of Lugou Bridge

    图 3  有限元模型信息

    Figure 3.  Finite element model information

    图 4  3种优化算子的优化包络曲线

    Figure 4.  Optimal envelope curves of three optimization operators

    图 5  3种优化模式得出的最优传感器布设方案

    Figure 5.  Optimal sensor placement schemes obtained by three optimization modes

    图 6  指标对比

    Figure 6.  Index comparison

    图 7  不同噪声水平下的损伤检测

    Figure 7.  Damage detection under different noise levels

    表  1  材料信息

    Table  1.   Information on materials

    材料 弹性模量/ MPa 密度/(kg·m−3 泊松比
    石砌体 2450 2556 0.15
    内填土 1000 1938 0.20
    下载: 导出CSV

    表  2  荷载信息

    Table  2.   Information on loads

    噪声峰值/(×g 权重 权重设置
    0.002 1.000 实测服役峰值加速度,g为重力加速度,假定其发生概率为100%
    0.050 0.815 扫频白噪声峰值,概率设定为0.001g与0.100g工况的均值
    0.100 0.630 50年一遇多遇地震的加速度峰值,发生概率为63%
    0.200 0.100 50年一遇设防地震的加速度峰值,发生概率为10%
    0.300 0.030 50年一遇罕遇地震的加速度峰值,发生概率为3%
    下载: 导出CSV
  • [1] AN H C, YOUN B D, KIM H S. Optimal sensor placement considering both sensor faults under uncertainty and sensor clustering for vibration-based damage detection[J]. Structural and Multidisciplinary Optimization, 2022, 65(3): 1-32.
    [2] ZINI G, BETTI M, BARTOLI G. A pilot project for the long-term structural health monitoring of historic city gates[J]. Journal of Civil Structural Health Monitoring, 2022, 12(3): 537-556. doi: 10.1007/s13349-022-00563-7
    [3] YANG C, XIA Y Q. A novel two-step strategy of non-probabilistic multi-objective optimization for load-dependent sensor placement with interval uncertainties[J]. Mechanical Systems and Signal Processing, 2022, 176: 109173.1-109173.15.
    [4] CARNE T G, DOHRMANN C R. A modal test design strategy for model correlation [C]// International modal analysis conference. Nashville: [s. n. ], 1995: 927-933.
    [5] KAMMER D C. Sensor placement for on-orbit modal identification and correlation of large space structures[C]//1990 American Control Conference. San Diego: IEEE, 1990: 2984-2990.
    [6] HOLLAND J H. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence[M]. Ann Arbor: University of Michigan Press, 1975.
    [7] 伊廷华, 张旭东, 李宏男. 基于自适应猴群算法的传感器优化布置方法研究[J]. 振动与冲击, 2013, 32(23): 57-63. doi: 10.3969/j.issn.1000-3835.2013.23.011

    YI Tinghua, ZHANG Xudong, LI Hongnan. Optimal sensor placement based on adaptive monkey algorithm[J]. Journal of Vibration and Shock, 2013, 32(23): 57-63. doi: 10.3969/j.issn.1000-3835.2013.23.011
    [8] 伊廷华, 张旭东, 李宏男. 基于异步爬猴群算法的传感器优化布置方法研究[J]. 计算力学学报, 2013, 30(5): 599-604. doi: 10.7511/jslx201305001

    YI Tinghua, ZHANG Xudong, LI Hongnan. Asynchronous-climb monkey algorithm for optimal sensor placement[J]. Chinese Journal of Computational Mechanics, 2013, 30(5): 599-604. doi: 10.7511/jslx201305001
    [9] 伊廷华, 张旭东, 李宏男. 基于改进猴群算法的传感器优化布置方法研究[J]. 计算力学学报, 2013, 30(2): 218-223. doi: 10.7511/jslx201302008

    YI Tinghua, ZHANG Xudong, LI Hongnan. Research on optimal sensor placement based on improved monkey algorithm[J]. Chinese Journal of Computational Mechanics, 2013, 30(2): 218-223. doi: 10.7511/jslx201302008
    [10] 伊廷华, 张旭东, 李宏男. 基于分布式猴群算法的传感器优化布置方法研究[J]. 工程力学, 2014, 31(3): 93-100.

    YI Tinghua, ZHANG Xudong, LI Hongnan. Distributed monkey algorithm for optimal sensor placement[J]. Engineering Mechanics, 2014, 31(3): 93-100.
    [11] 伊廷华, 张旭东, 李宏男. 基于小生境猴群算法的传感器优化布置方法研究[J]. 工程力学, 2014, 31(9): 112-119. doi: 10.6052/j.issn.1000-4750.2013.04.0323

    YI Tinghua, ZHANG Xudong, LI Hongnan. The niching monkey algorithm for optimal sensor placement[J]. Engineering Mechanics, 2014, 31(9): 112-119. doi: 10.6052/j.issn.1000-4750.2013.04.0323
    [12] 赵建华, 张陵, 孙清. 利用粒子群算法的传感器优化布置及结构损伤识别研究[J]. 西安交通大学学报, 2015, 49(1): 79-85. doi: 10.7652/xjtuxb201501013

    ZHAO Jianhua, ZHANG Ling, SUN Qing. Optimal placement of sensors for structural damage identification using improved particle swarm optimization[J]. Journal of Xi’an Jiaotong University, 2015, 49(1): 79-85. doi: 10.7652/xjtuxb201501013
    [13] 王志宇, 陈华钊, 施袁锋, 等. 模态测试不确定性影响因素分析及传感器布置应用[J]. 湖南大学学报(自然科学版), 2024, 51(7): 62-71.

    WANG Zhiyu, CHEN Huazhao, SHI Yuanfeng, et al. Analysis of influencing factors on uncertainty in modal testing and its application on sensor layout scheme[J]. Journal of Hunan University (Natural Sciences), 2024, 51(7): 62-71.
    [14] 董学超, 郭明伟, 王水林. 基于LightGBM的超大沉井下沉状态预测及传感器优化布置[J]. 岩土力学, 2023, 44(6): 1789-1799.

    DONG Xuechao, GUO Mingwei, WANG Shuilin. Sinking state prediction and optimal sensor placement of super large open caissons based on LightGBM[J]. Rock and Soil Mechanics, 2023, 44(6): 1789-1799.
    [15] 李英民, 秦阳, 刘纲. 基于行波理论的桁架结构传感器优化布设方法研究[J/OL]. 工程力学, 2023: 1-12. (2023-03-06). https://kns.cnki.net/kcms/detail/11.2595.o3.20230303.1255.006.html.

    LI Yingmin, QIN Yang, LIU Gang. Research on optimal placement method of truss structure sensors based on traveling wave theory[J/OL]. Engineering Mechanics, 2023: 1-12. (2023-03-06). https://kns.cnki.net/kcms/detail/11.2595.o3.20230303.1255.006.html.
    [16] 刘杰, 王海龙, 张志国, 等. 斜拉桥损伤可识别性传感器的优化布置方法[J]. 西南交通大学学报, 2018, 53(1): 173-181. doi: 10.3969/j.issn.0258-2724.2018.01.021

    LIU Jie, WANG Hailong, ZHANG Zhiguo, et al. Optimum sensor placement method for cable-stayed bridges based on damage identifiability[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 173-181. doi: 10.3969/j.issn.0258-2724.2018.01.021
    [17] 张明金, 李永乐, 余显全, 等. 桥塔上风传感器安装位置对测量结果的影响[J]. 西南交通大学学报, 2015, 50(4): 617-622. doi: 10.3969/j.issn.0258-2724.2015.04.007

    ZHANG Mingjin, LI Yongle, YU Xianquan, et al. Influence of wind sensor location on bridge tower on measurement results[J]. Journal of Southwest Jiaotong University, 2015, 50(4): 617-622. doi: 10.3969/j.issn.0258-2724.2015.04.007
    [18] OTTOSEN N S, PETERSSON H. Introduction to the Finite Element Methods[M]. New York: Prentice Hall, 1992.
    [19] ZHANG C W, CHUN Q, LENG J W, et al. Optimal placement method of multi-objective and multi-type sensors for courtyard-style timber historical buildings based on Meta-genetic algorithm[J]. Structural Health Monitoring, 2024, 23(3): 1468-1497. doi: 10.1177/14759217231181724
    [20] YANG C, LIANG K, ZHANG X P. Strategy for sensor number determination and placement optimization with incomplete information based on interval possibility model and clustering avoidance distribution index[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 366: 113042.1-113042.21.
    [21] LIN J F, XU Y L, LAW S S. Structural damage detection-oriented multi-type sensor placement with multi-objective optimization[J]. Journal of Sound and Vibration, 2018, 422: 568-589. doi: 10.1016/j.jsv.2018.01.047
    [22] FINN C, ABBEEL P, LEVINE S. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks [M]. [S. l.]: International Conference on Machine Learning, 2017.
    [23] ZHANG C W, CHUN Q, SUN A, et al. Improved meta-learning neural network for the prediction of the historical reinforced concrete bond–slip model using few test specimens[J]. International Journal of Concrete Structures and Materials, 2022, 16: 41.1-41.29.
    [24] DOWNEY A, HU C, LAFLAMME S. Optimal sensor placement within a hybrid dense sensor network using an adaptive genetic algorithm with learning gene pool[J]. Structural Health Monitoring, 2018, 17(3): 450-460. doi: 10.1177/1475921717702537
    [25] GÜNAYDIN M, DEMIRKIR C, ALTUNIŞIK A C, et al. Diagnosis and monitoring of historical timber velipaşa Han building prior to restoration[J]. International Journal of Architectural Heritage, 2023, 17(2): 285-309. doi: 10.1080/15583058.2021.1919239
    [26] 中华人民共和国住房和城乡建设部. 砌体结构设计规范: GB 50003—2011[S]. 北京: 中国计划出版社, 2012.
    [27] 国家市场监督管理总局, 国家标准化管理委员会. 古建筑砖石结构维修与加固技术规范: GB/T 39056—2020[S]. 北京: 中国标准出版社, 2020.
    [28] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范: GB 50009—2012[S]. 北京: 中国建筑工业出版社, 2012.
    [29] HE L J, LIAN J J, MA B, et al. Optimal multiaxial sensor placement for modal identification of large structures[J]. Structural Control and Health Monitoring, 2014, 21(1): 61-79. doi: 10.1002/stc.1550
    [30] STEPHAN C. Sensor placement for modal identification[J]. Mechanical Systems and Signal Processing, 2012, 27: 461-470. doi: 10.1016/j.ymssp.2011.07.022
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  19
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-09
  • 修回日期:  2024-09-03
  • 网络出版日期:  2025-07-28

目录

    /

    返回文章
    返回