• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于两阶段算法的多技能工人共站装配线再平衡问题

罗亚波 周翔宇 张峰 李存荣

罗亚波, 周翔宇, 张峰, 李存荣. 基于两阶段算法的多技能工人共站装配线再平衡问题[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240002
引用本文: 罗亚波, 周翔宇, 张峰, 李存荣. 基于两阶段算法的多技能工人共站装配线再平衡问题[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240002
LUO Yabo, ZHOU Xiangyu, ZHANG Feng, LI Cunrong. Multi-Skilled Multi-Manned Assembly Line Rebalancing Problem Based on Two-Stage Algorithm[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240002
Citation: LUO Yabo, ZHOU Xiangyu, ZHANG Feng, LI Cunrong. Multi-Skilled Multi-Manned Assembly Line Rebalancing Problem Based on Two-Stage Algorithm[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240002

基于两阶段算法的多技能工人共站装配线再平衡问题

doi: 10.3969/j.issn.0258-2724.20240002
基金项目: 国家自然科学基金项目(51875430)
详细信息
    作者简介:

    罗亚波(1973—),男,教授,博士生导师,研究方向为复杂系统建模与优化、仿生算法、机器视觉等,E-mail:luoyabo1973@163.com

    通讯作者:

    张峰(1984—),男,讲师,研究方向为复杂系统仿真,E-mail: zhangfengie@whut.edu.cn

  • 中图分类号: TH166;TP18

Multi-Skilled Multi-Manned Assembly Line Rebalancing Problem Based on Two-Stage Algorithm

  • 摘要:

    为提高装配线的生产效率和灵活性,考虑多人共站与工人熟练度差异,分析多技能工人共站装配线再平衡问题,并对相应的求解算法进行设计. 首先,提出工人熟练度和综合影响系数的概念,分别用于量化工人差异和多人共站的效应,并以此建立多目标优化模型;其次,针对不同规模的算例,提出ε-约束法和一种贪婪启发式与邻域搜索相结合的两阶段算法进行求解;最后,通过消融实验与算法对比实验进行验证. 研究结果显示:在小规模问题的测试中,模型的2种求解结果仅在一个数据上相差0.3%,验证了模型的准确性;在消融实验中,任意一种策略的舍弃均会导致求解结果变差,证明了各算法策略的有效性;而在大规模问题的对比中,所提算法相较于经典的多目标优化算法NSGA-Ⅱ和MOEA/D,在多数算例上均显示出显著优势,证明了所提算法在解决该问题上的优越性.

     

  • 图 1  问题分解与方案对比

    Figure 1.  Problem decomposition and scheme comparison diagram

    图 2  编码示例

    Figure 2.  Example of coding

    图 3  作业分配顺序序列生成过程

    Figure 3.  Generation process of job assignment sequence

    图 4  基于逐步平衡法的作业分配判断示例

    Figure 4.  Example of job assignment judgment based on stepwise balance method

    图 5  部分工人分配解码过程示例

    Figure 5.  Example of partial worker assignment decoding process

    图 6  IMODE/2算法流程

    Figure 6.  Algorithm flow chart of IMODE/2

    图 7  消融实验结果对比

    Figure 7.  Comparison of ablation study results

    图 8  IMODE/2与ε-约束法求解结果帕累托前沿图

    Figure 8.  Pareto front diagram resulting from IMODE/2 and ε-constraint method solutions

    表  1  工人熟练度数据示例

    Table  1.   Example of worker proficiency data

    作业 ski
    工人 1 工人 2 工人 3
    作业 1 0.90 1.10 1.05
    作业 2 1.06 1.02 0.87
    作业 3 1.12 0.98 1.11
    下载: 导出CSV

    表  2  综合影响系数数据示例

    Table  2.   Example of comprehensive influence coefficient data

    人数 r βr
    1 1
    2 0.98
    $ \vdots $ $\vdots $
    10 1.05
    下载: 导出CSV

    表  3  算例描述

    Table  3.   Description of benchmark example

    问题作业数量/项工人数量/人工作站
    数量/个
    关闭工作
    站数/个
    Jaeschke91041
    Mitchell211251
    Roszieg251561
    Buxey295082
    Sawyer302592
    Gunther352071
    Kilbridge452781
    Warnecke5850163
    Tonge706091
    Wee-Mag7535122
    Lutz28950153
    Arcus211142133
    Barthold14860224
    下载: 导出CSV

    表  4  消融实验策略与参数设置

    Table  4.   Strategy and parameter setting of ablation study

    算法 变异参数 选择策略 邻域搜索
    IMODE/2 自适应,p0=20,pG=5 非支配排序
    IMODE/2-1 固定,p=10,F1=F2=0.5,R=0.5 非支配排序
    IMODE/2-2 自适应,p0=20,pG=5 贪婪
    IMODE/2-3 自适应,p0=20,pG=5 非支配排序
    IMODE/2-4 固定,p=10,F1=F2=0.5,R=0.5 贪婪
    下载: 导出CSV

    表  5  算法对比统计结果

    Table  5.   Statistical Comparison of Algorithms' Results

    算例IMODE/2NSGA-ⅡMOEA/D
    平均节拍/s平均再分配次数/次HV平均节拍/s平均再分配次数/次HV平均节拍/s平均再分配次数/次HV
    Mitchell7.578.1011.778.129.409.238.429.707.37
    Roszieg7.575.9019.928.106.8014.758.3110.607.29
    Buxey5.588.9053.246.1616.0018.106.3715.6019.28
    Sawyer11.969.20107.2412.8318.1059.6414.0518.6034.00
    Gunther21.9512.60119.1223.2117.0072.1024.1420.1041.63
    Kilbridge19.1412.40161.6021.0824.3026.2522.0621.5050.79
    Warnecke33.2723.90338.1433.1736.10123.6433.9237.2080.93
    Tonge54.7727.20464.2156.5054.20112.0160.4046.60141.16
    Wee-Mag41.7335.20748.2142.6646.70550.9343.4548.70407.64
    Lutz29.7436.70452.4110.1355.40199.1210.4054.20214.70
    Arcus23431.0453.7010033.803588.4762.803486.203615.9659.704139.97
    Barthold70.00108.50555.6273.72123.50186.0273.35131.1072.86
    下载: 导出CSV

    表  6  95%置信度指标均值t检验

    Table  6.   95% Confidence Interval Mean T-test

    算例指标IMODE/2-NSGA-ⅡIMODE/2-MOEA/D
    置信下限置信上限置信下限置信上限
    Mitchell节拍/s−1.00.0−1.3−0.4
    再分配次数/次−2.4−0.2−2.5−0.7
    HV1.43.63.55.3
    Roszieg节拍/s−0.9−0.2−1.0−0.5
    再分配次数/次−1.80.0−5.3−4.1
    HV3.37.011.014.3
    Buxey节拍/s−1.20.0−1.5−0.1
    再分配次数/次−9.4−4.8−8.5−4.9
    HV31.139.130.637.3
    Sawyer节拍/s−1.80.1−2.8−1.4
    再分配次数/次−11.4−6.4−11.5−7.3
    HV39.855.466.180.4
    Gunther节拍/s−2.60.1−3.6−0.8
    再分配次数/次−7.1−1.7−10.0−5.0
    HV41.252.872.782.3
    Kilbridge节拍/s−2.9−1.0−3.8−2.0
    再分配次数/次−15.5−8.3−11.4−6.8
    HV118.6152.1100.2121.4
    Warnecke节拍/s−1.61.7−1.90.6
    再分配次数/次−15.3−9.1−16.1−10.5
    HV177.6251.4222.3292.0
    Tonge节拍/s−3.1−0.4−6.7−4.6
    再分配次数/次−30.3−23.6−22.0−16.8
    HV304.7399.8276.5369.6
    Wee-Mag节拍/s−2.10.2−3.0−0.4
    再分配次数/次−16.9−6.1−17.8−9.2
    HV138.9255.8299.9381.2
    Lutz2节拍/s−1.10.3−1.30.0
    再分配次数/次−23.6−13.8−22.4−12.6
    HV210.0296.3202.0273.3
    Arcus2节拍/s−164.7−150.3−189.7−180.1
    再分配次数/次−13.4−4.8−9.9−2.1
    HV5874.37220.95379.56408.1
    Barthold节拍/s−7.2−0.2−4.6−2.1
    再分配次数/次−22.5−7.5−29.8−15.4
    HV295.2444.0425.4540.1
    下载: 导出CSV
  • [1] GRANGEON N, LECLAIRE P, NORRE S. Heuristics for the re-balancing of a vehicle assembly line[J]. International Journal of Production Research, 2011, 49(22): 6609-6628. doi: 10.1080/00207543.2010.539025
    [2] MAKSSOUD F, BATTAÏA O, DOLGUI A, et al. Re-balancing problem for assembly lines: new mathematical model and exact solution method[J]. Assembly Automation, 2015, 35(1): 16-21. doi: 10.1108/AA-07-2014-061
    [3] SAMADHI T, SUMIHARTATI A. Model for assembly line re-balancing considering additional capacity and outsourcing to face demand fluctuations[C]//IOP Conference Series: Materials Science and Engineering. Nanjing: [s.n.], 2016: 814-823.
    [4] SANCI E, AZIZOĞLU M. Rebalancing the assembly lines: exact solution approaches[J]. International Journal of Production Research, 2017, 55(20): 5991-6010. doi: 10.1080/00207543.2017.1319583
    [5] BELASSIRIA I, MAZOUZI M, ELFEZAZI S, et al. An integrated model for assembly line re-balancing problem[J]. International Journal of Production Research, 2018, 56(16): 5324-5344. doi: 10.1080/00207543.2018.1467061
    [6] LI Y C, LI Z X, SALDANHA-DA-GAMA F. New approaches for rebalancing an assembly line with disruptions[J]. International Journal of Computer Integrated Manufacturing, 2022, 35(10/11): 1059-1076.
    [7] ZHANG Y H, HU X F, WU C X. Improved imperialist competitive algorithms for rebalancing multi-objective two-sided assembly lines with space and resource constraints[J]. International Journal of Production Research, 2020, 58(12): 3589-3617. doi: 10.1080/00207543.2019.1633023
    [8] LIU R F, LIU M, CHU F, et al. Eco-friendly multi-skilled worker assignment and assembly line balancing problem[J]. Computers & Industrial Engineering, 2021, 151: 106944.1-106944.12.
    [9] GIRIT U, AZIZOĞLU M. Rebalancing the assembly lines with total squared workload and total replacement distance objectives[J]. International Journal of Production Research, 2021, 59(22): 6702-6720. doi: 10.1080/00207543.2020.1823027
    [10] 张于贤, 梁师文, 杨梦珂. 多目标约束下装配线再平衡研究[J]. 兵器装备工程学报, 2019, 40(1): 214-219.

    ZHANG Yuxian, LIANG Shiwen, YANG Mengke. Research on rebalancing of multi-objective constraints assembly line[J]. Journal of Ordnance Equipment Engineering, 2019, 40(1): 214-219.
    [11] 张亚辉, 胡小锋, 吴传珣. 基于ε-约束法的多目标双边装配线再平衡问题[J]. 计算机集成制造系统, 2016, 22(11): 2551-2562.

    ZHANG Yahui, HU Xiaofeng, WU Chuanxun. Multi-objective two-sided assembly line rebalancing problem based on ε-constraint method[J]. Computer Integrated Manufacturing Systems, 2016, 22(11): 2551-2562.
    [12] ZHANG Y H, HU X F, WU C X. A modified multi-objective genetic algorithm for two-sided assembly line re-balancing problem of a shovel loader[J]. International Journal of Production Research, 2018, 56(9): 3043-3063. doi: 10.1080/00207543.2017.1402136
    [13] KATIRAEE N, CALZAVARA M, FINCO S, et al. Consideration of workforce differences in assembly line balancing and worker assignment problem[J]. IFAC-Papers OnLine, 2021, 54(1): 13-18. doi: 10.1016/j.ifacol.2021.08.002
    [14] BUDAK G, CHEN X. Pace making and worker reassignment for assembly line rebalancing[J]. SN Applied Sciences, 2020, 2(9): 1-15.
    [15] MICHELS A S, COSTA A M. Conserving workforce while temporarily rebalancing assembly lines under demand disruption[J]. International Journal of Production Research, 2022, 60(21): 6616-6636. doi: 10.1080/00207543.2021.1998694
    [16] 邓超, 胡瑞飞, 蒋捷峰, 等. 考虑工人分配的多目标装配线平衡优化[J]. 组合机床与自动化加工技术, 2021(6): 116-121, 126.

    DENG Chao, HU Ruifei, JIANG Jiefeng, et al. Multi-objective assembly line balancing optimization considering worker assignment[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021(6): 116-121, 126.
    [17] 徐责, 宋小欣, 付建林, 等. 考虑人员能力差异的多人共站混流装配线平衡研究[J]. 现代制造工程, 2020(11): 33-40.

    XU Ze, SONG Xiaoxin, FU Jianlin, et al. Study on the balance of multi-person stage-sharing mixed-flow assembly line considering the difference of personnel ability[J]. Modern Manufacturing Engineering, 2020(11): 33-40.
    [18] 李金霖, 陈晓红, 高杰. 用多能工应对需求波动的混流装配线平衡问题[J]. 系统工程理论与实践, 2016, 36(4): 923-933.

    LI Jinlin, CHEN Xiaohong, GAO Jie. Designing a mixed model assembly line with utility workers to satisfy uncertain demands[J]. Systems Engineering-Theory & Practice, 2016, 36(4): 923-933.
    [19] ÇIMEN T, BAYKASOĞLU A, AKYOL S D. Assembly line rebalancing and worker assignment considering ergonomic risks in an automotive parts manufacturing plant[J]. International Journal of Industrial Engineering Computations, 2022, 13(3): 363-384. doi: 10.5267/j.ijiec.2022.2.001
    [20] PÉREZ-WHEELOCK R M, OU W, YENRADEE P, et al. A demand-driven model for reallocating workers in assembly lines[J]. IEEE Access, 2022, 10: 80300-80320. doi: 10.1109/ACCESS.2022.3194658
    [21] KARAS A, OZCELIK F. Assembly line worker assignment and rebalancing problem: a mathematical model and an artificial bee colony algorithm[J]. Computers & Industrial Engineering, 2021, 156: 107195.1-107195.16.
    [22] YANG C J, GAO J, SUN L Y. A multi-objective genetic algorithm for mixed-model assembly line rebalancing[J]. Computers & Industrial Engineering, 2013, 65(1): 109-116.
    [23] 杨红光, 胡小锋, 张亚辉, 等. 考虑多技能人员的装配线再平衡问题研究[J]. 组合机床与自动化加工技术, 2015(7): 131-134.

    YANG Hongguang, HU Xiaofeng, ZHANG Yahui, et al. Research on assembly line rebalancing with mixed-skill workers[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2015(7): 131-134.
    [24] KATIRAEE N, CALZAVARA M, FINCO S, et al. Assembly line balancing and worker assignment considering workers’ expertise and perceived physical effort[J]. International Journal of Production Research, 2023, 61(20): 6939-6959. doi: 10.1080/00207543.2022.2140219
    [25] MICHELS A S, LOPES T C, SIKORA C G S, et al. A Benders’ decomposition algorithm with combinatorial cuts for the multi-manned assembly line balancing problem[J]. European Journal of Operational Research, 2019, 278(3): 796-808. doi: 10.1016/j.ejor.2019.05.001
    [26] MARTIGNAGO M, BATTAÏA O, BATTINI D. Workforce management in manual assembly lines of large products: a case study[J]. IFAC-Papers OnLine, 2017, 50(1): 6906-6911. doi: 10.1016/j.ifacol.2017.08.1215
    [27] ZHANG J Q, SANDERSON A C. JADE: adaptive differential evolution with optional external archive[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 945-958. doi: 10.1109/TEVC.2009.2014613
    [28] 王丽萍, 任宇, 邱启仓, 等. 多目标进化算法性能评价指标研究综述[J]. 计算机学报, 2021, 44(8): 1590-1619.

    WANG Liping, REN Yu, QIU Qicang, et al. Survey on performance indicators for multi-objective evolutionary algorithms[J]. Chinese Journal of Computers, 2021, 44(8): 1590-1619.
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  17
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-09
  • 修回日期:  2024-05-10
  • 网络出版日期:  2025-10-22

目录

    /

    返回文章
    返回